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Rutledge, James H. III (Ph.D., Analytic Health Sciences)
Multi-response Nonlinear Mixed Effects Models for Longitudinal Data Analysis

Thesis directed by Professor Gary O. Zerbe

This thesis presents a method for analyzing multi-response nonlinear longitudinal
data. Currently, the methods used to handle multi-response nonlinear longitudinal data
usually involve a two stage approach. First, nonlinear functions for each variable are fit
to each subject. Second, the parameters from stage one are then used to estimate
population average parameters, estimate parameter correlations, conduct hypothesis tests,
etc. This two stage approach is often cumbersome because it involves modeling each
individual separately. Sometimes the two stage approach is impossible because there
might be inadequate data to fit a nonlinear function to certain subjects. This thesis
presents a unified approach for fitting multi-response nonlinear mixed effects models
(MNLMEM) to longitudinal data. Essentially the nonlinear aspect of the model is
handled by Taylor series expansion. Once the model has been "linearized", a
multi-response analog of the Laird and Ware model (Biometrics 38: 963-974,1982.) that
has been developed by Zucker, Zerbe, and Wu (Biometrics, in press) is then applied. In
addition, if the errors in the model are additive and the model has been "linearized", it is
also possible to use an algorithm discussed by Hocking (7he Analysis of Linear Models,
1985). Using either approach it is possible to obtain estimates of the fixed effects,
variance components, and Fisher's information matrix for both the fixed effects and
variance components. This makes it possible to conduct asymptotic hypothesis tests and

build asymptotic confidence intervals about functions of the fixed effects and variance
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components. The methods are very general and allow for missing and unequally spaced

data.

Signed ﬂ/(/‘/a/“/ "/‘Z /

F aculty member in charge of thesis
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CHAPTERI1
INTRODUCTION
A good starting place for this thesis will be to explain the title: Multi-response

Nonlinear Mixed Effects Models for Longitudinal Data Analysis.

1.1 Longitudinal Data

Longitudinal data are characterized by two features. First, repeated
measurements on the same subject over time or dose are collected. Second, each subject
can be described with a similar intrasubject model that relates the response variable to
time or dose. Figure 1.1 shows a plot of some longitudinal data. The lines are used to
connect the measurements for each subject. Longitudinal data analysis methods have
widely been used in dose response curves and growth curve analysis. Since there are
repeated measurements on the same subject, the observations in longitudinal data are
often correlated. Therefore, the usual regression models which assume independence

between observations are not appropriate.

1.2 Multivariate vs Univariate

The "multi-response" part of the title implies that interest lies in more than one
response variable. Consider the data shown in Figure 1.1. These data arise from a
glucose tolerance test. Blood samples are drawn from each patient at 30 to 60 minute
intervals. An insulin level and a phosphate level is then measured for each patient at
each of the different time periods. Thus, these data are multivariate since the investigator

is interested in both glucose and phosphate, and these values are measured
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simultaneously on each patient at each time period. In medical research the multivariate
aspects of data are often overlooked or ignored. Typically the data shown in Figure 1.1

would be analyzed using two separate univariate analyses.

Figure 1.1
Insulin and phosphate levels for 13 patients after administration of a glucose tolerance
test.
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1.3 Nonlinear vs Linear

" Any model of the following form is considered to be a linear model:

Y=B0+B121+-~ +BPZP+8' (11)

Here the Z; can be any function of the explanatory variables X1, X2, ..., Xy. What

distinguishes model (1.1) is that it is linear in the parameters. Some simple examples

follow.




Example 1: Consider the simple linear regression case of regressing weight on

height. The model would be:

Weight = Bo + P1 Height +€. (1.2)

Example 2: If the relationship between height and weight was not exactly a
straight line we could add a quadratic term to the model to account for some of the

curvature. The model would be:

Weight = Bo + B1 Height + B, Height* + €. (1.3)

So, even though the previous equation is not a straight line, it is still a linear model

because it is linear in the parameters. Any model that is not of the form (1.1) is said to

be a nonlinear model. That is, a model is nonlinear if it is not linear in the parameters.

Some examples may help to clarify this point.
Example 3: Exponential decay curves are often fit to pharmacokinetic data. For

example consider measuring the elimination of hydrogen with the following model:

Hydrogen = aexp{P - time} +¢. (1.4)

This model is nonlinear in the parameter . However, by taking the natural logarithm of

both sides, the model becomes:

In(Hydrogen) = In(ot) + B - time + e. (1.5)




Now the model appears to be of the form (1.1). We say that this model is intrinsically
linear since it can be put into a linear form. In this case, the form of the error is affected.
Example 4: In the area of growth curve analysis, nonlinear models are often
employed. These models are typically mechanistic in that they are derived from some
assumptions about growth that usually depend on difference equations or differential

equations. For example, suppose that we assume that the rate of growth at a particular

time, ¢, is directly proportional to the amount of growth yet to be attained. If o is the

maximum growth size and  is the growth at time ¢ then we have the following

differential equation:

dw/dt = k(0. — w). - (1.6)

Here k is the rate constant of the growth curve. If we integrate the above equation we

get:

w=0(1-PBexp{-kt}). . (1.7)

In models such as those described above the parameters are often interpretable. Here the
maximum growth is o, and at ¢ = 0 the growth curve starts at the point (1 —f3). The

growth rate £ is also readily interpretable (Draper and Smith, 1981).



1.4 Fixed vs Mixed Effects Models
The data shown in figure 1.2 are the immunoglobulin G (IgG) anticardiolipin
antibody levels of a group of pregnant women over the course of their pregnancies

(Lynch et al., 1994).

Figure 1.2
IgG levels for a sample of 20 pregnant women over the course of their pregnancies.

IgG Levels in Pregnant Women

20
18
16
14
12
10

IgG Level

o N » O @

0 10 20 30 40 50
Gestation Period in Weeks

If a researcher was interested in modeling the trend of IgG over time, one approach

would be to use simple linear regression. The model could be:

The y; is the IgG level for the ith women at the jth measurement. The x; is the

gestational age of the ith women's fetus at the jth measurement. The usual regression
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assumption is that e; are iid N(0,6?) [iid, independently identically distributed]. In this
situation we call the model a fixed effects model. Since the data in Figure 1.2 contains

repeated measures over time on individuals, it is unreasonable to assume that all of the
observations are independent. One way around this assumption is to model a line to each
individual. That is, for each individual we will have an intercept and slope. Thus the

model becomes:

yi=(+a)+(B+bxi;+ei. (1.9)

In this model o +a; is the ith woman's intercept and P+ b; is the ith woman's slope. In

addition to assuming that the e; are iid N(0,0?) we assume the following:

a;
(bi) N(0’2D>Q)‘ (1.10)
Thus in this model we see that the variance of y; is no longer simply o*. This type of
model is often called a "stochastic parameter" model, because each parameter in the
model is allowed to vary across individuals. In the case of model (1.9) each individual is

modeled to allow for individual slopes and intercepts. In this model the o and B are

considered fixed effects and the a; and b; are considered random effects. Since the

model involves both fixed and random effects it is called a mixed model. In general a

mixed model is any model where the variance structure is not simply o*I (Hocking,

1985).




1.5 Overview

Taken by themselves, each of the previous topics has a rich history in the
foundation of statistical knowledge. However, the knowledge base starts to diminish as
these topics are overlapped. It is the intersection of multi-response, nonlinear, and mixed
effects that make this thesis unique in its undertaking. It is the intent of this thesis to
discuss multi-response nonlinear mixed effects models (MNLMEMs). A brief outline for
the organization of this thesis follows. Chapter II will be a review of the literature. In
Chapter III two MNLMEMs will be introduced. In Chapter IV the methodology will be

demonstrated on several data sets. In Chapter V a brief discussion will be offered.




CHAPTER II
LITERATURE REVIEW
It is the intent of this chapter to put the multi-response nonlinear mixed effects
model (MNLMEM) into historical perspective with other significant works in the field of

longitudinal data analysis.

2.1 Brief Background on Longitudinal Data

As previously stated, the distinguishing factors of longitudinal data are: the
variance structure is not simply oI and individuals tend to follow the same general
pattern. The earliest article found in the literature that seems to specifically address the

problems associated with longitudinal data was written by Wishart (1938). In modeling
the growth of bacon pigs over time Wishart (1938) fit quadratic polynomials to each pig.
Then he analyzed the resulting regression coefficients across different groups of pigs
using the usual ANOVA techniques. The next article found in the literature that seems to
address the problems of longitudinal data is authored by Box (1950). Box (1950)
describes a method for growth curve analysis that is based on differencing the original
data. The differences thus become interpreted as the average growth during successive
periods. Often the result of differencing yields the simple compound symmetric
covariance structure found in agricultural split-plot designs. In these studies each subject
is treated as a "plot" and the multiple measurements per subject are treated as "subplots."
Box (1950) goes into several tests for determining if the simple compound symmetric

variance structure is appropriate. Box (1950) was among the first to analyze longitudinal



data with multivariate methods that allowed for an unstructured covariance matrix. The
mixed effects models would soon replace the multivariate models since they could handle
data that were unequally spaced and/or missing. Both of these approaches will be

discussed in the following two sections.

2.2 Longitudinal Data via Multivariate Analysis

C.R. Rao (1958, 1959, 1965) played an instrumental role in the development of
longitudinal data analysis. His models centered around balanced data, that is, he assumes
that each of n subjects are measured at the same ¢ times and no data are missing. Rao
uses the traditional two stage approach. First, a growth curve is fit to each individual

then an average growth curve is estimated. Rao's model for the ith individual (i=1,...,n)

is:

Y,=XPB +E;. 2.1
gx1 PP px1 gx1

In model (2.1) Y, is a data vector for the ith individual. X is a known design matrix that

does not change from individual to individual. B is an unknown vector of parameters to

be estimated. E, is a vector of random errors, where it is usually assumed that:

E; ~ N(0, ng). (2.2)

Rao (1.959) showed that the unbiased minimum variance estimator for model (2.1) is:
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B=(X/s1X)"1X’S1Y (2.3)

where S is the sample covariance matrix and Y is the mean vector of the data.
Pothoff and Roy (1964) extend model (2.1) by adding a post-matrix to the model.

Their generalized model for all n individuals is:

q}<(n=q><niJ p;n mén+ql>(<:n' (2.4)

The columns of Y are mutually independent and the g elements in the columns follow a
multivariate normal distribution with expectation BEA and unknown variance Z (g X g,

and positive definite). The matrices A and B are respectfully the across and within
subjects known design matrices. & is a matrix of unknown parameters that needs to be
estimated. The generalized model is felt to be more convenient for handling longitudinal

data. Pothoff and Roy (1964) propose that estimation in model (2.4) can be

accomplished by transforming the original data of model (2.4) as follows:

Y, =(B'GB)"'B'GY. (2.5)

pxn

Here G is any matrix such that (B’G™ B)~ exists. Under the transformation (2.5) the
data can now be analyzed using well known multivariate analysis of variance
(MANOVA ) techniques (see, e.g. Roy, 1957, Chapter 12). Pothoff and Roy (1964)

discuss choices of the G matrix. They conclude that the 'farther’ away G is from X the
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worse the power of tests will be and the wider the confidence intervals will be. Khatri
(1966) found the maximum likelihood estimates of model (2.4). He shows that the
maximum likelihood estimate will occur when G=S (the sample covariance matrix). He

also develops the theory necessary to test the following hypothesis:

H:F E C'=0. (2.6)

Rao (1965) comments that in Pothoff and Roy's model (2.4) using an arbitrary G

matrix in the transformation (2.5) does not make use of all the information in the sample
unless G happened to equal . Rao (1965) also suggests that it may be beneficial to
weight by something other than S. He calls this method "adjusting for concomitant

variation." Grizzle and Allen (1969) synthesize the work of Pothoff and Roy (1964),
Rao (1965), and Khatri (1966) by showing how Rao's "concomitant" variables can be
included in model (2.4).

A drawback of the previous models is that they all require that there are no
missing data and that all data must be collected at the same points in time or space. In
medical research the above requirements are often impossible to achieve. Another
disadvantage of these models is that there are a large number of variance components to
be estimated if g is large. Therefore, a univariate approach to the problem may be more
beneficial. The next section will focus on the analysis of longitudinal data via the

univariate mixed effects model.




2.3 Longitudinal Data via the Univariate Linear Mixed Effects Model

Based on the work of Harville (1976, 1977), Laird and Ware (1982) popularized
a mixed model that is perfectly geared for longitudinal data analysis. By writing the
model in a subject specific format and taking advantage of the fact that subjects are
independent of each other they were able to keep the size of the necessary computational
matrices to a minimum. This made it possible to implement their model on desktop
computers. Their model plays such a significant role in the analysis of longitudinal data
that it is worth examining. It will be assumed that there are i=1,....M subjects and that

each subject is measured n, times. The Laird and Ware (1982) model is:

Vi = Xi o + Z,‘ bi + €; (27)
mx1l  mXPPXl pxkkxl  nx1
where
e; ~ N(0, Ri_) (2.8)
and
b;~N(O, D) . (2.9)

In the above model y, is the vector of observations for the ith individual. X; and Z, are
known design matrices. @ is an unknown vector of fixed effects that needs to be
estimated. The b, is a random vector of unknown individual effects and e, is the random
error. In addition it is assumed that e, and b, are independent. It is usually assumed that
R; =021, . The elements of R, and D make up what is commonly known as the

"variance components." Estimation can be carried out via the EM algorithm. The EM
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algorithm alternates between calculating the conditional expected values and then
maximizing the likelihood. There are several advantages to using the EM algorithm.
First, for most practical purposes it is guaranteed to converge. Second, the variance
components remain in the parameter space. Third, the EM algorithm produces
conditional estimates of the individual random effects (Dempster, Laird, and Rubin,
1977; Wu, 1983). Laird and Ware (1982) also discuss how the EM algorithm can be
implemented to obtain restricted maximum likelihood estimates (RML). The idea behind
RML is to maximize the part of the likelihood that is invariant to the fixed effects
(Thompson, 1962; Patterson and Thompson, 1971). Jennrich and Schluchter (1986)
considered the following model for analyzing unbalanced longitudinal data:

yi= X B+e. (2.10)

mxl  mXppXl pxi

The y, is the data vector for the ith individual (=1,2,...,M). X is a known design matrix.

B is a vector of unknown parameters to be estimated. The e, is a vector of random errors

distributed as N(0, Z; ). The Z; consists of ¢ covariance parameters contained in the
n;xn;

vector ©. Jennrich and Schluchter (1986) discuss several variance structures. The

simplest variance structure is the completely independent covariance structure:

X, = o2l,,. (2.11)
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The above variance structure can easily be modified to allow for different variances

among groups of individuals. The next case they consider is the random-coefficients

model:

X, =Z,DZ+¢%1, . (2.12)
This is similar to model (2.7) and is derived from model (2.10) by letting:

e;=Z;b; + u; where b; ~ N(0, D) and independently u; ~ N(0,62L,,) . (2.13)
nxkkxl  n;x1 bxk

The special case where Z, is a column vector of all ones leads to the well known
between-within mixed ANOVA model called compound symmetric or uniform. The

next error structure they consider is the first-order autoregressive or AR(1):

T, =X= [o',,] where 6, = 62pls, (2.14)

Related to the AR(1) error structure is the banded error structure:

X;=2=[0, | where 64 =6, ,r=|s—t|+1. (2.15)
The next to last error pattern they consider is unstructured or arbitrary:

O11 O12 -+ Oun
G21 O22 -+ O,
Xi=X=| o Tl (2.16)

Cn1 On2 -+ Cn,»n,-

i i
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They also present but do not use a factor-analytic covariance structure. The

log-likelihood for model (2.10) is:
M M
In L =Constant-% 3 log | Z;| - § X(y: - X:B)'Z; (y: — XiB). (2.17)
i=1 =1

Jennrich and Schluchter (1986) discuss how to maximize (2.17) using Newton-Raphson,
Fisher scoring, and a modified EM algorithm. Hocking (1985) discusses a model similar

to that of model (2.10). His model is:

nxl  "Ppxl  nxl

Y=Xoa+e wheree~N(0,V)andn}<’n=ZOqVq. (2.18)
q

Unlike Jennrich and Schluchter (1986), Hocking (1985) does not require that individuals
be independent. Hocking (1985) gives an algorithm for finding maximum as well as
restricted maximum likelihood estimates for model (2.18). Zerbe, Wu, and Zucker
(1994) show that the usual Laird-Ware (1982) model is a special case of the Hocking
(1985) model. All error structures discussed by Jennrich and Schiuchter (1986) with the
exception of AR(1) and factor-analytic can be handled by Hocking's (1985) model.

Jones (1990, 1991, 1993) extends model (2.7) to allow for an AR(1) within subjects error
structure along with random effects. Jones (1993) shows how the Laird-Ware model can
be put into state space form and then how the Kalman filter can be used to calculate the

likelihood. He uses this approach to find the maximum likelihood estimates.
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2.4 A Brief History of the Mixed Model

As stated previously, Laird and Ware (1982) popularized the use of the mixed
effects model to analyze longitudinal data. Biostatisticians tend to call model (2.7) the
"_aird-Ware" model as if Laird and Ware had invented it. In fact the history of the
mixed model is extensive and dates back to Airy (1861), although he didn't call it a
mixed model, he used a mixed model approach to model astronomical observation.
Fisher (1925) is credited with developing the first method of estimating variance
components. While trying to estimate the intraclass correlation coefficient he set the
ANOVA sums of squares equal to their expectation and solved a system of linear
equations to obtain estimates for the variance components. This method would come to
be known as the "method of moments technique.” From the late 1930's to the late 1960's
many authors used the "method of moments technique" to arrive at estimates of the
variance components for several special cases of model (2.7). Henderson (1953)
published a landmark paper for dealing with model (2.7). In his paper he gave three
methods for estimating the variance components of unbalanced mixed models. His
methods could be applied to as many crossed and/or nested classifications as necessary.
A problem with the "method of moments technique" is that it can lead to negative
estimates for variance components. A few authors have found closed form maximum
likelihood estimates for model (2.7), but these only applied to simple cases of model
(2.7). Hartley and Rao (1967) showed how the Steepest ascent method could be used to

obtain maximum likelihood estimates for a special case of model (2.7) where D is

diagonal and R = 62I. With computers becoming more and more powerful maximum
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likelihood methods became more and more popular. Finally, Harville (1976, 1977)

generalized the Gauss-Markov theorem to the mixed effects model (2.7). His work
became the impetus of Laird and Ware's contribution to the analysis of longitudinal data.
Recently (1994), SAS released PROC MIXED for the personal computer. PROC
MIXED implements model (2.7) and will no doubt become the "work horse" for
researchers modeling linear longitudinal data. Searle (1992) has devoted a whole book to
the mixed model. In his book he provides a whole chapter on the history of the mixed
effects model. Much of what has previously been written in this thesis was taken from
his book. All of the previously mentioned models have been geared for analyzing a

single response variable, the next section will discuss models for multiple responses.

2.5 A Multi-response Linear Mixed Effects Model

Zucker, Zerbe, and Wu (in press) discuss a linear multi-response model. They
have two pulmonary function outcomes of interest. First, they measure forced expiratory
volume in one second (FEV,). Second, they measure functional residual capacity (FRC).
Thesg measurements are repeated at approximately 3 month intervals for about 3 years.
They fit lines to the FEV, and FRC data over time. Using a multi-response model they
are able to answer questions like: Is the slope of FEV, related to the intercept of FRC?
Their subject-time specific model is equivalent to:

yi =X,-ja+Z,-J-bi+U,-,-e;,-. (219)

mpxl PP pskx]l np% )
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They, is a vector of the multiple responses for the ith subject at the jth measurement

time (i=1,...,M and j=1,...,m,). The o is a vector of fixed effects. The b,is a vector of

subject specific random effects. The e, are subject-time specific random errors. The

X,

i’

z,, and U, are known design matrices. It is further assumed that:

b; ~ N(0, lgk) and independently e; ~ N(O,r§’).

Letting,

the following subject specific model is obtained:

y:= X;oo+Z:b;+Use;.

(2.20)

(2.21)

With the exception of the U, this is essentially the Laird-Ware model (2.7). The U,is an

indicator matrix used to aid in the handling of missing data. For example, if bivariate

data such as FEV, and FRC (Yv » Yixe)' are collected on individuals over time, and at

one of the times the FEV, value was missing then:

U;=[0 1]



19
for that subject-time specific model. The form of the residual error covariance matrix is
also slightly different from what is normally used in the Laird-Ware model. In model

(2.21) it can be shown that:

e;~NO,V=1,®$),

where ® is the Kronecker product. In the Laird-Ware (1982) model it is usually

assumed that e; ~ N(0,62I). Estimation can be carried out using simple modifications
to the EM algorithm discussed by Laird and Ware (1982). Recently, Mickey et al.

(1994) published a multi-response model similar to (2.21). However, their model is not
as general. It requires every response to be measured at each time point.

Jones (1993) devotes a whole chapter to the fitting of multi-response models
with random effects. His approach involves setting the problem up in state space form
and using the Kalman filter to calculate the likelihood.

A natural extension of the linear mixed effects model seems to be the nonlinear

mixed effects model. These models will be discussed next.

2.6 Nonlinear Mixed Effects Models

In many applications of longitudinal data, nonlinear models are preferable to the
polynomial models fit using linear mixed effects models. Higher order polynomials can
usually be fit to any set of data, however, these types of models are not based on any
underlying biological theory. They also have difficulty fitting data that have asymptotes.

Many nonlinear models have parameters that have biological interpretation and the curve
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is derived from biological plausibility. Historically, there have been two approaches to
modeling nonlinear repeated measures data. The first method is to just ignore the within
subject correlation and fit a nonlinear model to the data via least squares. The second
method is to use a two stage approach where each subject is first fit with a nonlinear least
squares model. In the second stage, the parameters for each subject are used as the
dependent variables in a Multivariate Analysis of Variance (MANOVA) to obtain
estimates of the population parameters (Sheiner and Beal, 1980). In recent years the

methods have become more sophisticated and warrant closer examination.

2.7 Nonlinear Longitudinal Data Analysis via Empirical Baye's Estimates
Berkey (1982) discussed the following nonlinear model for analyzing growth
curves:
Y: = f(b;, X; )+ €; . (222)
n;x1 gx1 n;x1 n;x1
The vector y, is the data for the ith subject (i=1,...,M). The f is a vector valued function.
The b, are subject specific parameters that need to be estimated. The x, are covariates

associated with the ith subject. The e, are random errors. The following is assumed in

the above model:

e:lb; ~ N0, 621). (2.23)
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Based on the above assumption the conditional distribution function of y; is:

g(y:lb;, 62, x,) = 1/[(2r67)""] exp {i Z[y, — ﬂbi,x,-j)]z}. (2.24)
=t

262

The curve for an individual is completely determined by b,. This curve can be

considered to be a realization of a random variable B having probability density function

hg(b,) that is multivariate normal with mean p and covariance X. Therefore the density

function of b, is:

h(b; |, Z) =

— (b, —p) (b, -
(2n)qf2m_l‘ exp{ 2 (bl u') q§q (bl u)} . (225)

It is further assumed that b, and o2 are independent, this implies that the joint

distribution is:
q(b;,6?) = h(b;)p(c?). (2.26)

The noninformative prior density p(c?) =< 1/6% will be used. Following the work of
Lindley and Smith (1972), point estimates for b, will be sought by finding the mode (not

mean) of the posterior distribution. The posterior distribution can be shown to be:

wib;, 62ly;) o= =15 exp {FL[yi = f(bs, X)) Iys = 1(bi, X))/ |+ (bs ~ IE™ (b -w}.
(2.27)
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Estimation can be carried out by searching for the joint mode of the posterior distribution
or by integrating out 62 in (2.27) to obtain the marginal distribution k(b;ly;). Finding

the b, that maximizes k(b;ly;) is the same as finding the b, that minimizes 1/k(b;ly).

The marginal posterior mode is the b, that minimizes:

l/k(biIYi) oc [CXP{%(bi -p)/'Z (b, -WHHy:- f(bi,xi)},{Yi —f(b;,x:)}] e . (2.28)

Notice that as n,increases, less weight is given to the prior. Berkey (1982) is interested
in improving subject specific parameter estimates by borrowing information from other
subjects to estimate the parameters for a particular individual. This is a variant of Stein
shrinkage (James and Stein, 1961). Berkey (1982) is not interested in the population
parameter estimates. Racine-Poon (1985) extends the work of Berkey (1982) by adding
a 3rd stage to the hierarchical model. Adding the third stage allows for the estimation of
population parameters. Where Berkey (1982) considers the prior information on

K and £ known (or at least a good estimate is known) Racine-Poon (1985) considers
them to arise from a vague prior distribution. In doing so, Racine-Poon (1985) is able to
obtain empirical Bayes estimates of population parameters as well as individual
parameters.

Another approach for analyzing longitudinal data has been motivated by the

generalized linear model (GLIM). This approach will be discussed next.
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2.8 A Generalized Estimating Equations Approach

Liang and Zeger (1986) extend the generalized linear model (GLIM) popularized
by McCullagh and Nelder (1983) to the case of longitudinal data. Under mild
assumptions their estimating equations give consistent estimates of the regression
parameters and their variances. In the discussion that follows we will use the following
notation. Let y, be the jth observation on the ith subject (j=1,...,n; and i=1,....M). Letx;
be a p x 1vector of known covariates associated with y, . McCullagh and Nelder (1983)

discuss the case where n, =1 for all subjects. For discussing this case the j can be

dropped from the notation. In the quasi-likelihood approach discussed by McCullagh

and Nelder (1983) the mean is related to the explanatory variables via a 'link' function:

— o/
g = fip pgl. (2.29)

And the variance is related to the mean through a variance function:
var(y:) = (Lo =v;. (2.30)

The ¢ is a scale parameter and interest usually lies in estimating the parameter vector B.

This can be accomplished by solving the generalized estimating equations:

M

U(B) = 2 Ou/0Be)v; (i — 1) =0. (2.31)

=1
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The solutions can be obtained via iteratively reweighted least squares. So far the y, have
all been independent. However, for longitudinal data the observations on a subject are

correlated. If'y, is a vector of observations, Liang and Zeger (1986) handle the within

subject correlation by defining a n; X n; "working" correlation matrix R( o ) for the ith
subject. Different structures for the "working" correlation matrix will be discussed later.

Based on the "working" correlation matrix the following "working" variance-covariance
matrix can be defined:

V, =A”R{()A %o (2.32)

nxn;
where
Ai =diag{v(uil)"--’v(uini)}- (233)

Note that if the "working" correlation matrix were the "true" correlation matrix then V,
would be the "true" variance-covariance matrix of y, . Liang and Zeger (1986) extend
(2.31) as follows:

M M
}:lvi(a, B) =Z§(au,-/aﬂ)’vz‘ (yi—p) =0 (2.34)

where y; = Vi1, V2, - Yin,)’ and p; = (Wa, K, ... Hin,)’ . Given an estimate of
R;(o) and ¢, an updated estimate of P can be obtained by iteratively reweighted least
squares. Next, given estimates of P, standardized residuals can be calculated and then

used to get new consistent estimates of R;(a) and ¢. This process keeps repeating until
convergence. There are several choices for selecting the form of the "working"

correlation matrix. The possibilities include:
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1. The simplest case is to let R;(a) = I, , then the model essentially reduces to
the case discussed by McCullagh and Nelder (1983).

2. If all subjects are measured at the same times/doses and there are no missing
data then the correlation matrix can be totally unstructured. If n=n for all subjects then

there will be n(n-1)/2 correlations.
3. Another possibility is to let [Ri(@)], =o j# £, this is the correlation
structure assumed in the compound symmetric random effects model.

4. Another choice is:

[Ri(o)]x = ol y-tul<m | (2.35)
! 0 |t,-,--—t,~,t|>m

The t; and ¢, are the jth and kth observation times for the ith subject. This correlation
structure is known as a stationary m-dependent process.

Zeger, Liang, and Albert (1988) introduce terminology that has become popular
when discussing longitudinal models. They classify models as either Population Average
(PA) or Subject Specific (SS).

In the PA model interest lies in the marginal expectation, W, =E(y;). We

assume that the link function and variance function are as shown in (2.29) and (2.30).

For example we could have:

logit(iy) = x},p™ and Var(yi) = (1 — ps).
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The estimate of B describes how the population averaged response depends on the

covariates.

In the Subject Specific (SS) model the conditional mean u; = E(y;|b;) is the

focus. The link and variance functions are:

s (i) =X,B% + 2] b; and Var(yulb:) = Vos(ui)o, (2.36)
I1xggx

where b;is a random effect from a mixture distribution F. For example the following

formulation could be used:

logit(us) = x},B* +z/b;, (2.37)
Varilb;) = u;(1~uy), (2.38)
b: ~ N0, D). (2.39)

Since E(b;) =0, B*describes on average how an individual response depends on the
covariates. Zeger et al. (1988) summarize the distinction between population average

(PA) models and subject specific (SS) models this way:

The principle distinction between SS and PA models is whether the
regression coefficients describe an individual's or the average population
response to changing x. A secondary distinction is in the nature of the
assumed time dependence. PA models only describe the covariance among
repeated observations for a subject; SS models explain the source of this
covariance. In PA models the covariance matrix must be positive-definite
but is otherwise unrestricted. In SS models, the time dependence arises
solely from the shared subject effects, b, in the conditional mean. The
covariance matrix is thus fully determined by the choices of g(u,) and F.




27
Zeger et al. (1988) point out that in the linear model the fixed effects for PA and SS
models have the same interpretation.

The strength of Zeger and Liang's (1986) quasi-likelihood approach is that it can
handle non-Guassian situations. Traditionally, the generalized estimating equations
(GEE) approach has focused on a few well known link functions such as the identity
(linear), logit, probit, and log. As pointed out by Lindstrom and Bates (1990), the GLIM
SS model is restricted by the fact that the link function in (2.36) is a function of one
variable and is therefore more restrictive than need be. The GLIM model does not suffer
from a major drawback of Berkey (1982) and Racine-Poon (1985), in that the method
does not require that each individual must be fit with a nonlinear model. Another
drawback to the methods of Berkey (1982) and Racine-Poon (1985) is that all parameters
are considered to vary stochastically across individuals. Other miscellaneous work on

nonlinear mixed effects model will be discussed next.

2.9 Other Work on Nonlinear Mixed Effects Models

Jones (1993) devotes a whole chapter to the fitting of nonlinear models with
random effects. Again his approach involves casting the problem into state space form
and using the Kalman filter to evaluate the likelihood.

All of the nonlinear models discussed so far have been geared toward single

response data. Seber and Wild (1989) discusses models of the following form:

Vij =j} (X;,ﬁ)+e,~,~ (i= L,2,..,n, j=1,2,...,d). (240)
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Seber and Wild (1989) call this a "multi-response" model. In this model, there are d
nonlinear models, each observed at n values of X. Model (2.40) can also be put into

vector notation, the model becomes:

yi =f(X;,B)+ &, (2.41)
dxl dx1 dxl
where
€~ N0, 2), (2.42)
and

On Oz --- Ot
T=| % %2 oM. (2.43)

Ca1 On2 *** Ouq

The original intent of this model was to handle multiple response data. However the
error structure used would be the multivariate analog of 62I. The model can be used to
analyze longitudinal data if we think of the d responses as being d measurements on the

same subject at d different times and if we drop the j subscript for the nonlinear functions
so that we have only one function. Then model (2.40) can be used to analyze single

response nonlinear longitudinal data. The resulting covariance structure will be arbitrary.

The -2 log likelihood for this model is:

“2InL = ndin2m) +nln [E] + Xly: £ (Xs, B E Iy ~£(X,, B)]. (2.44)
=1

A method for minimizing (2.44) is given by Bates and Watts (1987).
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Magnus and Neudecker (1988) describe a very general nonlinear mixed effects

model. Their model is:

X1 rxl

Yy, = H(a, T)+ e wheree~ N0, V[ 0,1]). (2.45)
nx1 p nx1 gx1

The y is a vector of observations. The W is a nonlinear vector valued function that
depends on the parameter vectors & and T. The error is normally distributed with mean
0 and variance V that depends on the parameter vectors @ and T. Notice that both the

expectation and variance depend on the same parameter T. The log likelihood for model

(2.45) is:

InL=-(n/2)InQ2r)—(n|V)2-(y-w)/Viy-pw/2 . (2.46)

Maximization of (2.46) can be carried out by taking derivatives of (2.46) with respect to

o, T and O and equating them to zero. Doing so results in the following "normal”

equations:

(auja(x;.)’V“ (y-p)=0 (h=1,..,p) (247
trace[V1(0V/00)] - (y-w)/V1(@V/e8,) VI (y-p) =0 (t=1,..,9) (2.48)

trace[V-1(QV/at)] - (y = )/ V1@Vt V-1 (y — ) — 200tV (y—p) = 0. (2.49)
| (k=1,..,r)
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The solution to the above system of equations will yield thé maximum likelihood
estimates. Typically, except for some special cases of model (2.45) these solutions are
extremely difficult to obtain. Magnus and Neudecker (1988) offer no methods for
estimation in model (2.45). Also, the model is not written in a subject specific form.
This makes implementation of the model difficult or even impossible if z is large. Model
(2.45) is good from a theoretical point of view. Once a model can be shown to be a
special case of model (2.45) all of the theoretical properties derived by Magnus and

Nuedecker (1988) can be applied.

2.10 Nonlinear Mixed Effects Models Directly Relating to MNLMEM

The multi-response nonlinear mixed effects model (MNLMEM) is essentially an
extension of the work by Sheiner and Beal (1980), Lindstrom and Bates (1990), Hirst et
al. (1991), and Vonesh and Carter (1992). A discussion of the strengths and weaknesses
of the various methods will prove useful in our discussion of MNLMEM. In order to
facilitate the comparison of several different methods a single model will be used. Asa
result some of the details of the various methods will be omitted. The basic model that

the previous authors wish to make inference about can be written as:

yi [bi ~ N[f( @, b;, x;),06%1,,] (2.50)
n;x1 PX1 gx1 k;x1
and
b; ~ M0,D]. (2.51)
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The vector y,contains the data for the ith subject (i=1,...,M). The f is a nonlinear vector
valued function. The @ is an unknown vector of fixed effects and the b, is a vector of

random effects. The x; is a vector of covariables associated with the ith individual, this

is usually time or dose. Some authors don't assume normality in (2.50) and (2.51). The
problem with the nonlinear mixed effects model (2.50 and 2.51) is that traditional
methods of estimation, like maximum likelihood, can not be performed directly on the
model because the likelihood surface for the model is very complicated. For example, in
order to find the likelihood, the probability density function (pdf) for y, needs to be

found. The pdfis given by:

g(yn) = [ g(yilb.)g(b:)db;

= [(2no?) ™7 exp{ 2k ly: - (0, by, x)'[y; — f(& by, x)]}(2m)¥2 D] 2 exp{ Lb/D"'b, }ab, .
(2.52)

There is no closed form solution for this integral because we are integrating with respect
to b; and b, is an argument of a nonlinear function. Thus, except for a few special cases,
it is impossible to obtain the likelihood function for the nonlinear mixed effects model.
However, it may be possible to approximate the likelihood surface near the values that
maximize the original likelihood. If the contours for the approximate surface closely
match the contours for the original surface near the estimates, then inferences made on
the approximate model will also apply to the original model. All of the previously
mentioned authors deal with this problem by using various Taylor series approximations

to the model. After the model has been "linearized" via a first order Taylor series
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expansion, various methods of estimation are employed on the approximated model. The
hope is that the approximation is good and results can be inferred back to the original
model. How well the Taylor series approximates the original model is a problem that
will briefly be discussed in Chapter V.

Sheiner and Beal (1980) approximate model (2.50) by expanding about the
expected value of the random effects, namely E(b,)=0. Doing so results in the following

approximate model:

vdb, (Mo b;=0,x)+Z(@bil,o%L,, (2.53)
where
Z(a)= af/abﬂb,:o . (2-54)
It is known that for any two random variables X and Y the following holds:

E(X) = E[E(XIY)] and Var(X) = E[Var(XI1)] + Var[E(XID)].

This fact coupled with (2.51) can be used to approximate the marginal distribution of y,.

Thus the approximate model is:
yi* (f(a, b; =0,x,), {Z:(@)DZ;() + 021,,,_}) : (2.55)

The notation that has been used above is useful for describing the hierarchical
distribution theory of the nonlinear mixed effects model. However, when describing

models it is often easier to work with a more compact notation. We can arrive at the
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same approximate model (2.55) using slightly different notation. The following notation

will be now be adopted. Let the original model be written as:
yi=f(o,b;, x;) +e;. (2.56)

Sheiner and Beal (1980) expand (2.56) about the expected value of the random effects

[E(b,)=0]. The approximate model becomes:

yi=fla,b; =0,x;) +Z;(a)[b; - 0] +e; (2.57)
where as before
Z(o) = of/ob’ 1, .

If we make the following assumption:
b; ~ (0, D) and independently e; ~ (0, 62L,,), (2.58)

then the approximate model (2.57) is the same as the approximate model (2.55). In the

approximate model it is important to note that the matrix of partial derivatives depends

on . Sheiner and Beal (1980) advocate using extended least squares (ELS) to
accomplish estimation. ELS is carried out by minimizing the following objective

function:

M
O(e, D, 62) = Y, log |Z,(a)DZ (0) + 61, |
=1

M
+2[y;: - f(at, b; = 0,x,)](Z{(@)DZ;(a) + 6°1,) " [yi — f(@, b; = 0, x))]. (2.59)

=1
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If normality is assumed in (2.58) then minimizing the previous objective function will
yield maximum likelihood estimates for the approximate model (2.57). Also, assuming
normality the approximate model is a special case of a model discussed by Magnus and

Nuedecker (1988). This can be seen by comparing (2.45) and (2.55). Notice that both
the expectation and variance depend on @. As pointed out by van Houwelingen (1988)

this method of estimation can often lead to inconsistent estimates, He writes;

In a series of papers in the pharmacological literature, Sheiner and Beal
and others advocate the extended least squares (ELS) methodology that
combines the regression and variance model into a single objective
function based on normal-theory maximum likelihood. The inadequacy of
this method is folklore in the (mathematical) statistical literature.

Vonesh and Carter (1992) prefer to work with a special case of model (2.56) where the
random effects enter the model in a linear fashion. However, they recognize the
importance of model (2.56) and approximate the model similar to Sheiner and Beal
(1980) by expanding around the expected value of the random effects. However, instead

of letting the resulting matrix of partial derivatives (Z,) depend on @ they substitute in

the consistent ordinary least squares (OLS) estimate &o.s. They also avert the

inconsistency problem by using generalized least squares (GLS) instead of ELS. The

GLS objective function they minimize is:

A A M A A A A
0(“')’:', &OLS, D,6%) = Z[y:' -f(a, xi)]/[Zi(aOLS)DZ:(aOLS) + 62171;]—1 [y: —f(a, x)].

=1

(2.60)




35

The estimates for the variance components 8 = {62, D} are arrived at via a method of
moments technique. Vonesh and Carter (1992) argue that upon minimizing (2.60) one
obtains a strongly consistent estimate of o and they show that this estimate, &ys, iS

asymptotically normally distributed with mean o and variance given by:

-1
[El Zg(&GLS)[Zi(&OLS)IA)Zf(&OLS) + &zlni]—lzi(&GLS):I . (2.61)
A nice feature of the Vonesh and Carter (1992) method is that they do not require the
assumption of normality. However, as they point out, their estimates are not
asymptotically efficient. If the errors and random effects are indeed normally distributed
and the variance structure is correctly specified then ELS (same as maximum likelihood)
will beat Vonesh and Carter (1992). A problem arises in that small deviations in these
assumptions can drastically reduce the efficiency. Another drawback with the Vonesh
and Carter (1992) method is that the distribution theory for the variance components is
lacking. Also, Vonesh and Carter (1992) require that each subject have a minimum
amount of data and the amount of data required varies from model to model.

Hirst et al. (1991) combine the methods of Sheiner and Beal (1980) along with

the traditional nonlinear techniques by expanding model (2.56) about current estimates of

the fixed effects (0to) and the expected value of the random effects (b,,=E[b,]=0). Their

approximate model becomes:

yi = (0o, bjo = 0,x;) + Hy(0— 0to) + Zi(b; — 0) +¢; (2.62)

where
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H=ofRa/l _, ~ Z;=ofbil ., (2.63)

bi=big=0 by=b;o=0

Unlike Sheiner and Beal (1980) these matrices of partial derivative do not contain any
unknown parameters. The approximate model (2.62) can be written in the following

form:

y,-—f(ao,b,o =0,x;)+H;0 =H;x+7Zb;+e; (264)
or
v =Ha+Zb; +e;. (2.65)

Assuming normality in (2.58), the objective function for the approximate model (2.65) is

very similar to Sheiner and Beal's (2.59). The objective function is:

M M
O(a, D, c%ly;) =Y log | Z,DZ, + 6L, | + Xly; - H:al/(ZDZ; + 6°L,) [y} - H;at].
=1 i=1

(2.66)

Minus a constant (2.66) is the -2 log likelihood for the approximate model (2.65). A big
difference between the approximate model of Sheiner and Beal (1980) and the
approximate model of Hirst et al. (1991) is that in the latter model the mean and the

variance do not share an unknown parameter. According to van Houwelingen (1988),
"Generally speaking, ELS is fine if the variance model does not depend on a". In terms

of the approximate model, the Z, can be considered fixed. The approximate model

(2.65) can be recognized as a Laird-Ware (1982) model and maximum likelihood
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estimation can be carried out using the EM algorithm. Once the EM algorithm
converges, new estimates for the fixed effects (o), are available. These new estimates
can then be used to update the approximate model (2.64) and the process is repeated until

the likelihood of the approximate model (2.64) can not be improved. An advantage of
using the EM algorithm in this scenario is that at the final iteration of the EM algorithm
estimates of the random effects, b, , are readily available. Another advantage is that the
EM algorithm can easily be used to obtain restricted maximum likelihood estimates
(RML). Also, since the EM algorithm provides maximum likelihood estimates of the
fixed effects and variance components we know that all estimates are asymptotically
consistent and asymptotically efficient (Cassella and Berger, 1990). These results can be
used to obtain estimates of the standard errors of the estimated fixed effects and variance
components. This is an advantage over Vonesh and Carter (1992), since they only give
the asymptotic properties for the fixed effects. It is important to keep in mind that the
asymptotic properties that are being discussed are solely based on the linearized model.
If the linearized model does not do a good job of approximating the original nonlinear
model then the asymptotic properties discussed here may be very misleading. If we are
williﬂg to assume that the approximate model (2.64) closely approximates the real model
(2.56) near the parameter estimates, we can infer the asymptotic theory of the
approximate model to the original model. Another advantage of Hirst et al. (1991) is that
there is no minimum amount of data needed for each individual. Hirst et al. (1991) also
stress the special case of model (2.56) where the random effects enter the model in a

linear fashion. This model can be represented as:
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y,—=f(a,xi)+Z,-b,-+e,~. (267)

Assuming normality in (2.58), the exact likelihood of the above model (2.67) can be
described. There is no need to approximate the likelihood surface. In order to find the

maximum likelihood estimates, Hirst et al. (1991) expand about an initial estimate of the
fixed effects (o) as a computational crutch. Their approach is similar to what is done

in ordinary nonlinear regression. The model becomes:

yi zf(ao,x,-)+H,-(a—ao)+Z,-b,-+e,- (268)

where
H; = /00’ | ger, - (2.69)

This model can be written as:

yi—f(ao,x;) +H;00 = H;a+Z;b; +e; (2.70)

or
y: =H;aa+Z;b;+e; . (271)

The difference between this approximate model and the one given in (2.64) is that the H,
and Z, are not matrices that depend on b;since there was no expansion about b,. It should
be recognized that model (2.71) is of the Laird-Ware (1982) form. Therefore, the EM
algorithm can be used to find new maximum likelihood or restricted maximum
likelihood estimates of the fixed effects. These new estimates can now be taken as the
initial values in the approximate model (2.70). The process is repeated until the

likelihood can be improved no more. At this point the EM algorithm has maximized the
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likelihood for the original model (2.67) and estimates of the fixed effects, variance
components, and random effects are available. Model (2.67) is very similar to the model
that Vonesh and Carter (1992) prefer to work with. The difference between Vonesh and
Carter (1992) and Hirst et al. (1991) concerning this model (2.67) is that Vonesh and
Carter (1992) have asymptotically consistent and efficient estimators of the fixed effects
without assuming normality. Hirst et al. (1991) rely on the asymptotic properties of
maximum likelihood estimators and therefore need to assume normality. This also puts
Hirst et al. (1991) in a position to make inferences about the variance components,
something that Vonesh and Carter (1992) can't do. However, if the distributional
assumptions are not valid, the Hirst et al. (1991) asymptotic theory breaks down. At first
glance the nonlinear fixed effects with linear random effects model (2.67) does not
appear to be that useful. However, letting Z, be a vector of all ones will yield the
compound symmetric covariance structure discussed by Jennrich and Schluchter (1986)
and others. Letting Z, be an identity matrix can yield the unstructured covariance matrix
also discussed by Jennrich and Schluchter (1986) and others. Next we will switch back
to the model where the random effects are in the nonlinear part of the model.

Lindstrom and Bates (1990) take the approach of expanding model (2.56) about

current estimates of the fixed effects (o) and conditional expectation of random effects

(b = E[b;ly;]). The approximate model becomes:

yi=f(0o,bi,x;) +Hi(@—0o)+Z;(b;—by) +e; (2.72)
where
_ /
H; = of/oa| omq, Zi=0f/0b; ) (2.73)

1 a=0
bi=bjo bi=bj
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This model can also be written as;

yi— f((lo, bio, X,‘) +H,~ao +Zb,y=H;00+ Zib,- +€; (274)
or
y: =H;,00+Z;b; +e;. (275)

Lindstrom and Bates (1990) minimize the following objective function:

o(a, D,cly;) = f} log |Z,DZ] + 6L, | +i[y; -H;a)/(Z,DZ +6°L, ) [y} ~H;0].
(2.76)
Again, with the normality assumption, except for a constant (2.76) is the -2 log
likelihood for the approximate model (2.75). This appears to be the same objective
function that Hirst et al. (1991) minimize (2.66). The difference here is that the matrices
of partial derivatives are being evaluated at current estimates of the fixed effects (o)

and the conditional expectation of the random effects (b,=E[b,|y,’]). Also, they, is

different for this objective function. Lindstrom and Bates (1990) use the above objective
function to estimate the variance components. They use a Newton-Raphson (NR)
algorithm to accomplish this minimization. They prefer the NR algorithm over the EM
algorithm because of speed of convergence and the ability to use the orthogonality
convergence criteria (Bates and Watts, 1981). Once estimates of the variance

components have been acquired, they use them to obtain updated estimates of the fixed
effects (o;) and the conditional expectation of the random effects (b, =E[b,|y,']). They

accomplish this by minimizing the following objective function:
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M M
O(a, bly;, 6%, D) = X o[y - f(a, by, x,)] [y, — (0, b;, x)] + X Zb/Db; . (2.77)
i=1

=1

For a fixed a, the above objective function is a constant plus the log of the posterior

density of b. Therefore the b that minimizes (2.77) is the posterior mode. The o that
minimizes (2.77) is a maximum likelihood estimator of an approximate marginal

distribution of y. These new estimates of the fixed effects and variance components are
then used to update the approximate model (2.74) and the whole process is repeated.
Lindstrom and Bates (1990) recommend using the Hessian from the last iteration of the
approximate model (2.74) to obtain standard errors of fixed effects and variance

component estimates. They add the following caveat:

These uncertainty estimates are approximate in that they are based on a
linear approximation to the model function at the parameter estimates. This
type of approximation is commonly used to estimate the uncertainty in the
parameters of nonlinear models. As pointed out by Bates and Watts (1988,
Chap 6), these uncertainty estimates can be quite inaccurate and a better
appreciation of the uncertainty can be obtained by evaluating the profile
likelihood and creating pairwise plots of the projected likelihood contours.

The big disadvantage of using the Lindstrom and Bates (1990) method is that minimizing
the objective function (2.77) can quickly become a cumbersome task. If there are 100
individuals and 3 random effects, then (2.77) will have to be minimized with respect to
at least 300 parameters. Like Sheiner and Beal (1980) and Hirst et al. (1991), Lindstrom
and Bates (1990) do not require that each subject have a minimum amount of data.
Vonesh and Carter (1992) complain that Lindstrom and Bates' (1990) estimates have, "as

yet, unspecified asymptotic properties.” To the contrary, Lindstrom and Bates (1990)
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have maximum likelihood estimates for the approximate model (2.75). Therefore, for
the approximate model, the estimates are asymptotically consistent and efficient.
Lindstrom and Bates (1990) also show how their method can be used to derive restricted
maximum likelihood estimates.

Following the lead of Lindstrom and Bates (1990), Young et al. (1992) obtains
the same approximate model (2.75). However, unlike Lindstrom and Bates (1990), he
recommends using the EM algorithm to minimize the -2 log likelihood function (2.76).
Inherent in the EM algorithm is the ability to estimate E(b, |y, ), once the approximate
model (2.75) converges, the new estimates for o and E(b;ly;) are used to update H,Z,

and y,” and the whole process is repeated until the -2 log likelihood of the approximate

model converges to a minimum. This method differs from Lindstrom and Bates (1990)
in that the EM algorithm is used to obtain the most current estimates of the fixed effects
and conditional expectation of the random effects whereas Lindstrom and Bates use
another iterative scheme of minimizing (2.77). In some sense, using (2.77) brings
Lindstrom and Bates back closer to the original model (2.56), however they suggest
using the approximate model (2.75) for making inferences about the fixed effects and
variance components. Pinheiro and Bates (1995) indicate that using the method
suggested by Young et al. (1992) will result in convergence to the same estimates as
those obtained by employing the Lindstrom and Bates (1990) method. In fact, using the
method suggested by Young et al. (1992) the "Orange Tree" example published by

Lindstrom and Bates (1990) has been replicated. At convergence, the method suggested
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by Young et al. (1992) yields maximum likelihood estimates for the approximate model
(2.75). Itis also possible to use the EM algorithm to obtain RML estimates.

In a recent article, Pinheiro and Bates (1995) compare the method of Lindstrom
and Bates (1990), with 3 other more numerically intensive approximations of the

likelihood equation (2.52). They conclude the following:

We conclude that the linear mixed-effects (LME) approximation
suggested by Lindstrom and Bates, the Laplacian approximation, and
Guassian quadrature centered at the conditional modes of the random
effects are quite accurate and computationally efficient.

It has been shown that all of the methods discussed in this thesis for estimating
model (2.56) involve some sort of first order Taylor series expansion. The different
methods essentially relate to different ways to accomplish this Taylor series expansion.
For all methods, the resulting asymptotic theory estimates are only as good as the
original linear approximation to the nonlinear model. When the original model possesses
a problem known as curvature, the results obtained from the application of asymptotic
theory of the linearized model can be very misleading (Seber and Wild, 1989). Problems
associated with nonlinear models, including curvature will be briefly discussed in
Chapter V.

As of yet, the nonlinear mixed effects model has not been extended to handle the
case of multi-response data. The development of such models will be the subject of the

next chapter.




CHAPTER 1
SOME MODELS
In this chapter two models for analyzing multi-response nonlinear longitudinal
data will be presented. The first model combines the multi-response aspect of Zucker et
al. (in press) with the nonlinear aspect discussed by Sheiner and Beal (1980), Lindstrom

and Bates (1990), Hirst et al. (1991) and Vonesh and Carter (1992).

3.1 A Multi-response Nonlinear Mixed Effects Model with Nonlinear Random
Effects

Consider the following subject-time-response specific model:

Vi =fi( O, Di, Xy5) + €. (3.D
Prxl gpxt
The y,; is the outcome for the kth response variable measured on the ith individual at the
jth time (i=1,...,M, j=1,...,m;, and k=1,...,r). Where M is the total number of subjects, m;
is the number of repeated measurements for the ith individual, and r is the number of

responses. The £, is a nonlinear function associated with the kth response variable. 0t is

an unknown vector of fixed effects associated with the kth response that needs to be

estimated. b, is a vector of random effects for the ith individual's kth response function.
The x; is the subject-time specific covariate. This covariate is usually dose or time. The

e.. is a random error term. If the different subject-time specific responses are stacked

ik

one on top of each other the resulting subject-time specific model can be written as:
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Yijt Si(oe, b, xy) €1
Yin | _ | f2(@2,bo,xy) +| e

; ; (3.2)
y, Sfra, inr,xi,-) e;-,-r
In this model, it will be assumed that:
bil
b; = bfiz ~N(O, D) whereq=k§qk (3.3)
b;
and
e
e;=| 7 |~NO,S). (3.4)
eir

The b, and e, are also assumed to be independent. For notational ease model (3.2) can be

written as:

Yi = F(o,bi,xy) +e;. (3.5)

If it were not for the possibility of missing data, model (3.5) would be adequate. At each
subject-time specific point there is the possibility that one or more of the multiple

responses is missing. Thus, in estimating the within subject error structure it is important
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to keep track of where the missing responses occur. The following modification to
model (3.5) is proposed:

¥y =F(eb,x;)+ Uyey. (3.6)

nyx1 R 1

In this formulation n; is the number of responses being measured at the jth time point for
the ith individual. If no responses are missing then n,=r. U, is an indicator matrix. A
simple example may help to clarify the structure of U;, .

Example: Suppose a researcher is interested in measuring growth in children. At
ages 8, 8.5, 9, and 9.5 the researcher measures head circumference, height, and weight.
Suppose that at age 9 one child's height was not recorded (reason unknown). Then for

that child:

100
UB'[OM]'

The U, matrix can be used to incorporate non-time dependent covariables, such as
intelligence (IQ), into the model. The covariable is added to the response vector. Not
wanting to model the within subject error of the covariable, the corresponding row of U,
is set to all zeros. This makes it possible to obtain correlations between non-time

dependent covariables and parameters in the nonlinear model.

Estimation of a, b, S, and D via linearization will be discussed in the next

section.
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3.2 Linearizing the Nonlinear Model

Following the lead of Lindstrom and Bates (1990), model (3.6) will be linearized
using Taylor series expansion about @ and b,, (initial estimates of & and E[b,ly]D.

Doing so results in the following:

Yi —F(ao,bio,x,-,-) = H,](a— o) +Zy(b1 -bio)+ U,jey (37)

H, and Z,, are matrices of partial derivatives of F with respect to @ and b, evaluated at

the initial estimates and the value of the covariate. The model (3.7) can be written as:

Yi —F(ao, b,-o,x,-j) + H,’jao + Zgbio = H,~,~a+ Zgb, + Uyey (38)
or

The model can now be written in the following subject specific form:

y; =H:a+Zb;+Use; (3.10)
where
y:"l Hi Z; € Ui
yx= ’le ,Zi= ,€; = a.ndU,-—
y:m me, Zimi exm, Utm,

The subject specific model (3.10) is very similar to the model discussed by Laird and

Ware (1982). Given initial estimates @ and 8o={unique elements of S and D}, the EM
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algorithm can be used to obtain updated estimates of & and E(b, ly.") for the approximate
model (3.8). These new estimates are then used to update H,, Z;, and y, in the
approximate model (3.8) and then the estimation process is repeated. Model (3.8) is a
first-order approximation of model (3.6). Had model (3.6) been expanded around

b, =E(b,)=0 then (3.8) would become:
yi— F(ao, biO = O,xij) +H1‘ja0 = H,;,-(x+ Z,]b, + U-y~e,-j. (31 1)

This model (3.11) would be more in line with the methods proposed by Sheiner and Beal
(1980), Hirst et al. (1991), and Vonesh and Carter (1992). Using the method suggested
by Young et al. (1992) in model (3.8), the b, are not set equal to their expectation but
rather to their conditional expectation given the data (i.e. b,=E[b;]y,’]). This conditional
expectation is a byproduct of the EM algorithm and the methodology is more in line with
the methods proposed by Lindstrom and Bates (1990). With this in mind the EM

algorithm will be discussed next.

3.3 Use of the EM Algorithm in MNLMEM
The use of the EM algorithm for maximum likelihood estimation has been

discussed by Dempster et al. (1977). For each iteration of the EM algorithm, given

current estimates of S and D, « is estimated by:

. M “lry
Q= (Z HiwiH,-) (Z Hﬁwiy?)- (3.12)
=1 =

i=1
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The individuai random effects can be estimated as:

b, =DM/W,(y; -H.&). (3.13)

where W, = V;'(0) and V(8) = Z,DZ/ + U,(I® S)U;. To use the EM algorithm to
estimate the variance components, we consider the "complete” data. If it were possible to
observe the b, and e, in addition to the y;” then it would be easy to write down closed
form maximum likelihood solutions for @. If S and D are arbitrary, the complete data

maximum likelihood estimate of S is given by:

M m;
S= (ZZe,-jefj)/n =T,/n where n =¥, m;. (3.14)

i=1 j=1

The complete data maximum likelihood estimate for D is given by:

M
D= bb//M=T,/M. (3.15)

=1

In (3.14) and (3.15) T, and T, are the sufficient statistics for 8. Since the "complete”

data are not available, estimation of the sufficient statistics is necessary. This is carried

out by taking the expected value of an estimate of the sufficient statistics conditional on
the observed data (y*). Hence, the name E-step is used for taking the expected value. To

estimate the sufficient statistic T, the following expectation is taken:




. M m, . a
T, =E{22e,~je,’-j|yf ,&(9),9}

i=1 j=I1

M m; ~ A A A A A A A
=Y 3 {Vie;ly:, &(B), 0] + Ele;ly;, a(6),8]E[e;ly;, 6(6), 0]’}

i=1 j=1

M m;
=2 2[R,

=1 j=1
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(3.16)

(3.17)

(3.18)

Where [R;];is the jth rxr block of the block diagonal matrix R, which is defined as

follows:
R, =Viely;,&(®),8]+Elely;, &), 01ELe;ly;, &(6),6)’
where
Viely;,&®8),8] = (In, ® S) - (I, ® S)UW,U(I,, ® S)
and

Ele;ly?, &(8),0] = (I, ® S)U/'W,(y! ~H,00).

To estimate the sufficient statistic T, the following expectation is taken:
. Mo A
T,=E 2 b;b; Iy; ,0(0),0
=1

M A A A A A A ~ A
=Y {V[b,ly;, &(®), 0]+ E[b,ly;,&(8), 61E[b;ly;,&(6),0]'}
i=1
where
Vb:ly’, &(6),8] = D-DZ/W,Z.D

and
E[b;ly’, &®),8] = DZ/W {y; - Hia}.

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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In (3.16 through 3.25) D, S, and & are based on the previous M-step of the EM
algorithm. The next step in the EM algorithm is to obtain the maximum likelihood

estimates from the sufficient statistics. This is accomplished as:

S=Ti/n (3.26)
and

D = T,/M. (3.27)

Now the estimation process (3.12, 3.13, 3.26, and 3.27) can be repeated. During the EM

algorithm the -2 log likelihood for the approximate model (3.10) can be calculated as:
M M
—2InL =NIn(2m) + X In(|Vi(8) | + X(y; ~H:)'V;' (@)(y; ~Hi).  (3.28)
=1 =1

In (3.28) N s the total number of observations. When the change in the -2 log likelihood

is sufficiently small, the process is considered to have converged. At this point, the
estimate of @ is used to update the initial estimate &y and the conditional expectation of
the random effects is used to update the b,, in the approximate model (3.8) and the
process is then repeated.

Dempster et al. (1977) also discuss restricted maximum likelihood estimation
(RML). This can be accomplished by replacing W, with the following formulation in

(3.20, 3.21, 3.24, and 3.25):

W=V -V'H,HV;'H)"H/V]. (3.29)
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The likelihood can be calculated as:

-2 lnLREML = —2 InLyy +10g(

f, H{V;‘H,-l). (3.30)
i=1

As previously discussed in section 2.10 there are some problems when the
random effects enter the model nonlinearly. The problem being that the likelihood
surface can not be described well and an approximation to the likelihood surface must be
used. One way to avoid this problem is to only consider models with additive errors.

Such a model will be the focus of the next section.

3.4 A Multi-response Nonlinear Mixed Effects Model with Linear Covariance
Structure

Consider the following multi-response nonlinear mixed effects model:
Vi = fi(Qks X5) + €k (3.31)

The y,, is the outcome for the kth response variable measured on the ith individual at the
Jjth time (i=1,...,M, j=1,...,m,, and k=1,...,r). Where M is the total number of subjects, m,
is the number of repeated measurements for the ith individual's Ath response, and r is the
number of multiple responses. The £, is a nonlinear function associated with the kth

response variable. The x;;is a fixed covariate associated with the jth measurement on the

ith individual. In medical research this covariate is often time or dose. 0Ot is a py X 1
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vector of unknown fixed effects associated with the kth response variable. The e, is the
random error. The complete vector of random errors will be assumed to have the

following distribution:

e~ N[0,V(8)] where V(8)=Y 0,V,. (3.32)
q

The random effects are entered into the model by specifying the V, and estimating 6,.
As discussed next, this model is not a special case of the MNLMEM discussed in

sections 3.1 through 3.3.

3.5A Comparison of both MNLMEMs

At first glance, model (3.31) looks like a special case of model (3. 1) where there
are no random effects. However, it will be shown that the error structure for model
(3.31) is more general than the special case of model (3.1). Working with the
subject-time specific version (3.6) of model (3.1), and assuming that there are no random
effects, it can be shown that the model is:

vy ~ NIF(e.x5), Uy § Uj]. (3.33)

nx1 n;x1 BT rxny;

If model (3.31) were to be written in a subject-time specific format it could be shown

that:

vy ~ NIF(e,x;), V(8) = 2.6,V (3.34

nix1 nyx1 q
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The only difference in the two models is the variance structure. As used in sections 3.1
through 3.3, the matrix U, in (3.33) is just an indicator matrix. Thus if there are no data
missing, U,=I,. In this sense, the covariance structure listed in (3.33) is the multivariate

analog of ¢2I. Even if the U; are used to structure the covariance the following has

been shown by Zerbe et al. (1994):

U;SUj; =3 XISla[ (U [Us00 +(1 - 8u)[Uyl UL ] =26,V (3.35)
=1 u=t q
The [S],, is the (¢,u)th element of the matrix S, the [U, ], is the uth column of U;;, and
8. isunity when = and zero otherwise. In other words, the special case of model (3.1)

where there are no random effects in the model, is in fact a special case of model (3.31).

In a similar fashion, the special case of model (3.1) where random effects enter the model
linearly, can also be shown to be special case of model (3.31). The "banded" (Jennrich
and Schluchter, 1986) error structure, is an example of a covariance structure that can be
picked up by model (3.31) but not by model (3.1). It should be noted that the use of U,
in sections 3.1 through 3.3 makes the handling of missing data easy. This is not the case
with model (3.31) where the handling of missing data requires that close attention be
paid to the construction of variance design matrices V, . Next estimation of the

parameters in the linear covariance structure model will be discussed.
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3.6. Estimation in the MNLMEM with Linear Covariance Structure

Now the task becomes to estimate the fixed effects (o) and the variance
components (8,). The nonlinear part of model (3.31) can be "linearized" by using

. . o el 0
Taylor series expansion about an initial guess af‘ ). The model becomes:

Wi —f e AL )) = Hie(0te = 0 ) + €. (3.36)

©

) : . . o
L ] « 1s a matrix of partial derivatives evaluated at o, and the
=0,

day

Where H; = [
covariable. When putting the data into the format of model (3.37) it is often easiest to
stack all the individual observations involving one response variable on top of all the

other individual observations involving the other response variables. Doing so makes it
easier to specify the V, matrices especially when the data are balanced. Stacking the

individual observations on top of each other as follows,
Yy =D, e Yim |...|y,m| s eV M1 |ym,...y;,,.,zzl...|ymz, ceV Mmyp2 |...|yn,, ...y;,,.,,,|...|ymr, eV Mmy,rY
and linearizing, the complete model becomes:

y*=Ha*+e, where e~ N[0,V(0)]. (3.37)

Model (3.37) is a special case of a model discussed by Magnus and Neudecker (1988)
with a covariance structure of the type discussed by Hocking (1985) and others. Once

the model is in this format, it is simply a matter of applying Hocking's algorithm (1985,

p.239) to solve for a* (hence o) and 8,. Hocking's algorithm takes advantage of the
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linear structure of the variance and minimizes model (3.37)'s -2 log likelihood (same as

maximizing the likelihood):
~2InL(a*,0) = NIn2m) +In(| V() |) + {(y* —Ha*)'V1(6)(y* -Ha")}. (3.38)

The "new" estimates obtained from minimizing (3.38) can then be used as updated initial
values in model (3.36) and the estimation process repeated until the estimates stabilize.

Once estimates have been obtained, it is usually desirable to use these estimates to make

inferences. In the next section some asymptotic properties for o and  will be discussed.

3.7 Asymptotic Properties

Approximate covariances for the estimated parameters & and 6 may be obtained
after convergence of model (3.37) by examining Fisher's information matrix. These

covariances are approximate because they are based on the linearization of model (3.31)
and not the nonlinear model itself. For the linear model Hocking (1985) shows that

under suitable regularity conditions, asymptotically the following holds:

& ~ Na, V(o) = (H'V-1(®)H) ] (3.39)
and independently
& - MO, V(8) = 2Q71]. (3.40)

The (i,j)th element of Q is defined as:

Q; = trace[ VI (®)V,V@)V,]. (3.41)
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Thus, based on asymptotic theory it is possible to use a Wald test to perform the
following hypothesis test:

Hy: Ca =0.
dxppx1

Here C is a known matrix of full rank. The test statistic is:

(C&)[CV()C'] (C&) ~ 12 . (3.42)

In a similar fashion hypothesis tests for @ can also be conducted. Another possibility for
hypothesis testing is to use a likelihood ratio test. It is well known that the change in

-2 log likelihood for two "nested" models is chi-square with degrees of freedom equal to
the difference in the number of parameters being estimated in the two models. By
"nested" it is meant that one model is a special case of the other model. For example,
suppose the data have two distinct groups such as male and female. One approach would
be to fit a model to each group. Each group would have the same functional form, but
the parameters would be allowed to differ. The nested model would ignore the groups
and fit a model to the entire data. The functional form of the "no group" model should
be the same as used in the two group approach. The "no group" model is "nested" in the
two group model because it can be viewed as a special case of the two group model
where the parameters are exactly the same for both groups. The group effect can now be

tested by computing the change in -2 log likelihood between the two group model and
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the no group model. When possible, this likelihood ratio based method of testing is
preferable to the Wald test because it has more power.

Frequently in nonlinear longitudinal data interest may not only lie in the
parameters themselves, but in nonlinear functions of the parameters. In the next section

asymptotic theory for nonlinear functions of the parameters will be discussed.

3.8 Functions of the Parameters

It is often the case for longitudinal models that interest lies in some nonlinear
function, say g(a,0), of the parameters in the model (3.31). Following the work of

Zerbe et al. (1994), the nonlinear function g can be expanded around the estimates

& and O in a Taylor series fashion to obtain:

g(0t, 0) = g(6, 0) + [0g/datl o) (0~ &) + [3g/20] ;16 - ©). (3.43)

This can be rewritten as:

g(6,0) = g0, 0) + [0g/dal o5 )/ (6 — ) + [0g/00] 31/ (6-0).  (3.44)

Thus, based on the Taylor series approximation and the asymptotic properties (3.39) and

(3.40) the nonlinear function has an approximately normal distribution with:

E[g(6,9)] = g(ct, 8) (3.45)

and
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Vig(6, 8)] = [Bg/detl oos] V() [0g/detl o] + [0g/06] 4] V(8)[9g/081 4], (3.46)

Now (3.45) and (3.46) can be used to build approximate confidence intervals for the
MNLMEM with additive errors.

Zerbe et al. (1994) show that the usual Laird and Ware (1982) model is a special
case of the Hocking (1985) model. Following the same argument used in establishing
(3.35), it can be shown that the first order approximate models (3.10 and 3.11) are
special cases of the Hocking (1985) model. Thus all of the asymptotic theory developed
in sections 3.7 and 3.8 can be applied to the approximate models (3.10 and 3.11). The

next chapter will demonstrate some of the methods presented in this chapter.
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CHAPTER IV

APPLICATION
In this chapter three applications of the multi-response nonlinear mixed effects
model (MNLMEM) will be discussed. It is not the intent of this section to perform a
complete data analysis on the problems presented. The problems are introduced as a

means of displaying the virtues of MNLMEM.

4.1 Human Energy Expenditure

One method of measuring energy expenditure in humans has been dubbed the
"doubly labeled water technique" (Ravussin et al., 1991). This technique involves
administering a dose of doubly labeled water (*H,O and H,'®0O) to the patient and then

collecting urine samples over a period of time. The outcome is measured as the fraction

Figure 4.1
Plot of a single individual's *H and "*O isotope concentrations over time.
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of initial dose multiplied by 10°. This outcome will be referred to as isotope
concentration. In patients, the hydrogen isotope will be eliminated as H,O and the
oxygen isotope will be eliminated as H,0 and CO,. Thus energy expenditure as
measured by CO, production can essentially be calculated as the difference in the
elimination of °H and *O (Schoeller, 1988). As an example the data for a single
individual are plotted in Figure 4.1. Data of the type shown in Figure 4.1 can be

modeled with the following bivariate nonlinear model:

¥°) (a2 -exp(B°- 9
E(y,,) _ (a,,. o t)) | @1)

In the above equations the superscript "H" refers to hydrogen and the superscript "O"
refers to oxygen. The variable "t" is used to denote time in days. Using methodology
discussed by Prentice (1990), Ravussin (1991), and McClatchey (1993), it is possible to
show that a measure for energy expenditure can be calculated as a function of the
parameters from the above model. An estimate of energy expenditure is:
CO, =101,373{B"/o¥ —B°/a®}. (4.2)
litersiday

Ravussin et al. (1991), studied the energy expenditure for 12 individuals. A
summary of some of the data that he collected is listed in Table 4.1. One of the purposes
of collecting these data is to compare the doubly labeled water technique to a "gold

standard" obtained from a resﬁiratory chamber. Traditionally, individual estimates of

energy expenditure would be obtained by fitting linear regression lines to log




62
transformed data. Energy expenditure would then be calculated as a function of the
parameters from the linear regression. In addition, frequently only 2 or 3 data points
were used to calculate the regression lines (McClatchey, 1993). This approach has
several drawbacks. First, the process can be very tedious. For the data set listed in Table
4.1 a total of 24 regression lines would need to be calculated. Secondly, the bivariate

aspect of the data is being ignored.

Table 4.1.
Doubly labeled water isotope concentrations over time for 12 individuals.

Time in Days from Initial Dose

Subj 0.3 0.45 0.8 1.8 2.8 3.8 4.8 5.8 6.8 7.8
1 O 3.48854 3,.32859 3.23474 2.97045 2.74969 2.52143 2.11144 . 1.76980
H 3.35849 3.26164 3.16630 2.93978 2.80495 2.62949 2.256:23 1.96274
2 0 4.84651 4.57692 4.43260 4.07958 3.63036 3.25812 2.60030 2.10185
H 4.64355 4.39669 4.30189 3.96784 3.65238 3.35920 2.76285 2.39742
3 0 3.20667 3.12248 3.04104 2.67324 2.37099 2.10948 1.90107 1.69543 1.50291 1.36215
H 3.11547 3.04462 2.99848 2.59952 2.41369 2.19710 . 1.84347 . 1.53534
4 O 3.81704 3.67215 3.20852 2.72821 2.36556 2.03101 1.76670
H 3.63285 3.54392 3.15908 2.72974 2.43855 . 1.91005
5 0 3.98354 3.89723 3.80345 3.40261 3.08061 2.84423 2.61171 2.41170 2.17684 1.99011
H 3.83665 3.76665 3.61770 3.38561 3.08211 2.87339 2.70545 2.53691 2.33299 2.19331
6 O 3.34111 3.22376 3.16021 2.93201 2.73100 2.54906 . 2.26930 2.10675 1.97775
H 3.23138 3.14164 3.08666 2.90894 2.71902 2.60510 2.59870 2.44538 2.22306 2.15739
7 O 2.48738 2.41149 2.29184 2.10493 1.90630 1.71684 1.57067 1.38783 1.26306 1.12656
H 2.34182 2.30957 2.19497 2.05838 1.89827 1.74078 1.62261 1.46549 1.36204 1.25589
8 O 3.63611 3.32258 2.89675 3.50003 2.16647 . 1.53860 1.11277
H 3.47015 3.22538 2.88807 2.54646 2.26991 1.94030 1.75135 1.27193
9 O 2.64678 2.51201 2.37777 2.09786 1.84498 1.61762 1.14205 . .82468
H 2.56522 2.46954 2.31604 2.09272 1.87358 1.68425 1.26456 : .94117
10 © 4.15769 3.74063 3.17787 2.63972 2.15830 1.55962 1.08578
H 4.07425 3.66860 3.17309 2.70451 2.32274 1.69767 1.25006
11 0 4.70576 4.58412 4.26297 3.84957 3.38151 3.02387 2.34690 1.87995
H 4.52991 4.35606 4.12025 3.83240 3.40579 3.17685 2.49886 2.08678
12 © 3.80480 3.59962 3.52828 3.15069 2.87971 2.58227 2.09486 1.71963
H 3.62541 3.48708 3,32105 3.10180 2.97700 2.69846 2.23495 1.90039

The data listed in Table 4.1 are perfectly suited for MNLMEM analysis using a stochastic

parameter model. Using MNLMEM will provide a unified approach that allows for the
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estimation of parameters as well as a platform for hypothesis testing and confidence

interval building. Upon examining the plots of each individual it was obvious that a
random intercept (o) term was needed and a random decay rate (B) was suggested as

well. The full stochastic parameter MNLMEM model fit to the data 1s:

2\ (@ +ad)expi(B+b))} ) , (7 (43)
V) @ +alyexpi® +b0y) el ) |

In addition, the following distributional assumptions are made:

a?

e’ bl.o
(e{{) ~N(0,2>SQ ) and a{_, ~ N0, 4134) . 4.4)

bH

We can see that in the above model all the parameters vary stochastically across

individuals. MNLMEM was used to fit model (4.3), the results are listed in Table 4.2.
In addition, MNLMEM was used to fit a model where only the intercepts (a; and a?)
where allowed to very across individuals. These results are also listed in Table 4.2. The
SAS/IML code used to run the MNLMEM model is listed in appendix A. The iteration
history from the maximum likelihood Lindstrom and Bates run is included in appendix
B. There is a switch in the program that allows the user to specify whether to use
restricted maximum likelihood (RML) or maximum likelihood (ML). The user can also

specify whether the Taylor series expansion is done about E(b,]y,) (i.e. Lindstrom and
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Bates [LB] type of expansion) or about E(b,)=0 (i.e. Sheiner and Beal (SB) type of

expansion).

Table 4.2
Results of fitting stochastic parameter models to the data listed in Table (4. 1) using
combinations of maximum likelihood (ML), Sheiner and Beal (SB), and Lindstrom and
Bates (LB) methodologies.

Method af Bo aF B 2lnL
ML-LB
2 stochastic parameters 3.7217 -0.1112 3.5600 -0.0917 -333.28
ML-SB
4 stochastic parameters 3.7655 -0.1170 3.5964 -0.0965 -616.65
ML-LB

4 stochastic parameters 3.7741 -0.1188 3.6035 -0.0980 -625.27

As suspected, the model with 4 stochastic parameters fits much better than the model
with 2 stochastic parameters. Restricted maximum likelihood (RML) estimates were also
obtained. However, the RML results differ very little from those reported in Table 4.2 so
they are not presented here. Using (4.2), a measure of energy expenditure can be

calculated for each individual as:

CO4: = 10.13734,; (4.5)

where
R = 104{(BH + b7 )(GH +al ) = (BO+b0 /(60 +af )}. (4.6)

A nice feature of the E-M algorithm is that the individual parameter estimates are readily
available for use in calculating (4.6). Individual mean daily CO, production estimates

from the MNLMEM model (4.3) are shown in Table 4.3 along with the gold standard
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from the respiratory chamber. In addition, Table 4.3 shows the daily CO, production for

the usual regression approach accomplished by Ravussin (1991).

Table 4.3

MNLMEM estimates of mean daily CO, production (in liters per day) using combinations
of maximum likelihood (ML), Sheiner and Beal (SB), and Lindstrom and Bates (LB)
methodologies. Also, linear regression estimates and the gold standard.

Gold Linear ML-SB ML-LB
Subject Standard Regression 4 stoch. par. 4 stoch. par.

1 499 448 43430 436.92
2 356 362 328.50 327.41
3 535 517 488.39 495.93
4 393 406 405.97 410.01
5 370 362 381.74 383.29
6 424 417 435.0n 436.80
7 711 626 607.. - 616.39
8 480 495 447.75 456.54
9 672 640 619.57 648.13
10 373 384 418.41 425.20
11 332 297 342 .81 341.48
12 403 417 411.03 413.48

Table 4.4 compares the various methods with the gold standard using averages and
Pearson's correlation coefficient. The methods are comparable; however, only the
MNLMEM provides a unified approach that facilitates hypothesis testing and confidence

interval building.

Table 4.4
Average CO, production and Pearson's correlation coefficients between MNLMEM
estimates and gold standard using combinations of maximum likelihood (ML), Sheiner
and Beal (SB), and Lindstrom and Bates (LB) methodologies.

Method of Linear Gold
Comparison ML-SB ML-LB Regression Standard
Mean +/- S.D. 443+/-91 449 +/-91 448 +/- 105 462 +/- 123

Pearson Correlation 0.97 0.96 0.98 1
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4.2 Estimating Correlation Coefficients
Using MNLMEM it is possible to estimate nonlinear functions of both the fixed
effects and variance components. Once again consider the data plotted in Figure 4.1 and

listed in Table 4.1. Suppose the researcher is interested in estimating the following:
corr(@®, b ) = cov(a? , bf )/[ ‘/ V(a@2)yve) ] _ (4.7)

Calculating (4.7) is attempting to ascertain whether or not there is a linear relationship
between the initial value for oxygen and the decay rate of hydrogen across subjects. This
correlation coefficient is simply a nonlinear function of the parameters in the D matrix of

model (4.3). The estimated D matrix from the maximum likelihood Lindstrom and Bates

run is:
E}l f}z {93 §4 0.50056 —.00435 0.47356 —.00395
5628506 67 |_ —.00435 0.00094 —00416 0.00087 @3)
6, 05 05 0o 0.47356 —.00416 0.4486 -.00379 | ‘
8. 6, o B0 —.00395 0.00087 —.00379 0.00080

The estimated within subjects error matrix is:

. (85, 6,2)_(.0015215 .0013623
S=la & |= : 4,
(912 913) (.0013623 .0020208) (4.9)

The estimated correlation coefficient is:

p=04/{6:610 =-.00395/[(:50056)(.00080) =-.1967. (4.10)
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The above calculations were carried out on a computer using double precision. The
results presented may disagree with the results obtained by using a calculator on the

rounded numbers.

Using the methods described in chapter 3 it is possible to obtain an estimate of the

standard error for (4.10). Putting all of the variance components into a vector 0, itis
possible (see chapter 3) to estimate the variance covariance matrix of 6, we will call this
matrix \A’(B). The correlation coefficient simply becomes a nonlinear function of the

elements in 0. That is:
p=g(0)=04/6,61 . (4.11)

Following the work of Zerbe et al. (1994), the nonlinear function g can be expanded in a

Taylor series about 8. Thus we have:
2(0) = g(8)+[0g/0]'l,_5(6-9). (4.12)
Then g(é) is asymptotically normally distributed with:

E[2()] = 2(0) and V[g(8)] ~ [0g/06]’V(8)[3g/d8). (4.13)

Returning to our example we have:

dgldf, =—04/2{ /670810 } (4.14)
dg/de4 = 1/1/61910 (4.15)

dgld 1o =—04/2{ /63,01 }. (4.16)
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0 isa 13 x 1 vector. However, the nonlinear function g(é) involves only 3 parameters.
As a result 9g/00 will only have 3 nonzero elements. Thus, we can ignore the rows and
columns in V(@) that correspond to the zeros in dg/08. Working with maximum

likelihood (ML) and the Lindstrom and Bates methodology the estimate of \A’(O) can be
found in appendix B. This estimate is obtained from inverting Fisher's information

matrix. Thus we have:

V{g(8)] = [9g/06]'V(8){9g/08]

0.04188 -.00033 2.66E -6 |[0.1965

=(0.1965 49.82 122.23) -.00033 0.00004 —-5.4E—7 || 49.82
2.66E-6 =5.4E—-7 1.1E-7]\122.23

=0.0778 . 4.17)
Thus an approximate 95% confidence interval based on asymptotic theory is:

~.1967%.55 . (4.18)

Since the confidence interval overlaps 0 there is not enough evidence to support the

hypothesis that the higher a patient's initial value for oxygen the lower the patient's decay

rate for hydrogen.
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4.3 Glucose Tolerance Test
Consider the administration of a glucose tolerance test in humans. Along with the
glucose levels being measured, insulin and phosphate levels were also simultaneously
measured. Figure 1.1, on page 2, shows the individual profile plots for insulin and
phosphate for 13 individuals who received a glucose tolerance test. Each individual was

measured exactly 8 times at 30 to 60 minute intervals. The data of Figure 1.1 are listed

in Table 4.5.

Table 4.5
Insulin and phosphate levels after administration of a glucose tolerance test for 13
normal individuals.

Subject INSULIN uU/cl Subject PHOSPHATE mg%
0 30 60 90 120 180 240 300 minutes 0 30 60 90 120 180 240 300

1 24 97 10 87 7.1 29 20 20 143 33 30 26 22 25 34 44
2 30 55 90 70 42 36 20 28 237 26 26 19 29 32 31 39
3 10 60 72 54 36 30 22 25 340 41 3.1 23 29 31 39 40
4 11 45 28 50 32 1.1 80 15 436 30 22 28 29 39 38 40
5 20 61 95 7.0 50 32 25 10 541 38 21 30 36 34 36 37
6 13 72 68 48 40 28 1.0 15 638 22 20 26 38 36 30 35
7 15 80 84 64 38 22 16 16 738 3.0 24 25 31 34 35 37
8 10 67 75 60 44 18 12 14 8§44 39 28 21 36 38 40 39
9 35 84 90 102 87 47 32 15 950 40 34 34 33 36 40 43
10 1.1 45 28 50 32 11 25 16 10 3.7 31 29 22 15 23 27 28
1 24 97 10 87 7.1 29 20 20 11 37 26 26 23 29 22 31 39
12 10 33 39 25 18 10 10 1.0 12 44 37 31 32 37 43 39 438
13 40 91 76 3.1 30 10 10 10 13 47 31 32 33 32 42 37 43

Note: Data complements of Dr. Ron Gotlin, Professor of Pediatrics, UCHSC.

Looking at the data plotted in Figure 1.1, there appears to be an inverse relationship
between insulin and phosphate. When one goes up the other goes down and viceversa.

A researcher may be interested in answering the question; "What is the time lag between
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the maximum insulin level and the minimum phosphate level?" The data listed in Table
4.5 are perfectly suited for a multi-response nonlinear mixed effects model (MNLMEM).

The following nonlinear functions can be fit to the data listed in Table 4.5 and plotted in

Figure 1.1:

y'=f1(o, 1) = oty + 1% exp{—t/ot3 } (4.19)
and

P = FP(0, 1) = Oty + s (14 O ) + O7/(+ OLg) . (4.20)

In equations (4.19 and 4.20) the "I" is used to denote insulin, the "P" is used to denote
phosphate, and "t" is used to denote time. These models were selected based on plots of
average values over time. Also, 0.001 was used for time t=0.

A nice feature of this data set is that there are no missing values. The data are
perfectly suited for the MNLMEM with additive errors discussed in section 3.4. The

Hocking form (equation 3.37) of the model is:

o

o

. vy oy o
y! _| o e 00000 o | e (4.21)

*yp 0 0 0 £ Efi £ £ 3 208x1 - .
208x1 8(14 80:5 aa6 a(l7 208x7 (15
o
07 ] 7x1
In equation (4.21) we have the following:

*yl =yl—f[((!(0),t) and *szyP -fP((l(O),t) (4.22)

and
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o =a;-a”. (4.23)

In equations 4.22 and 4.23 a© is the initial estimate for o. This initial estimate will be
replaced with updated estimates until convergence. The complete error vector has the

following distribution:

e~ N[0, V(8)] where V(8) =Y. 0,V, . (4.24)
q

The problem is to correctly specify the V, to find the "best" variance structure. For the

purposes of this example we will examine several variance structures.

4.3.1 Model 1: Complete Independence
For this model we will assume that the error structure is given by
independent heterogeneous variances of phosphate and insulin. There will be no

correlation between insulin and phosphate. For :his model we only need two variances
components. The V, are given by:

Tioa 0104:| [0104 0104J
V, = and V, = . 4.25
1 [0104 0104 * L0104 Tios (5.23)

Here I,04 is a 104 X 104 identity matrix and 0104 is a 104x104 matrix of zeros. The -2

log likelihood and AIC for this model are listed in Table 4.6 (page 76). AIC is Akaike's

Information Criterion (Akaike, 1973; Jones, 1993). It is calculated as:

AIC = -2 In likelihood + 2(#parameters in model). (4.26)
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A "rule of thumb" for using AIC is to choose all models within 2 of the lowest AIC as
possible "best" models, and from this list of models choose the most parsimonious model

(Jones, 1993; Duong, 1984) .

4.3.2 Model 2: Independent within Phosphate and Insulin with Correlation
between Phosphate and Insulin

For this model we need 3 variance components. The corresponding

variance design matrices are:

0104 0104 0104 Ti04 Ii04 0104

v, =[Im4 0104] v, =[0104 0104] and V5 =|:0104 1104]. (4.27)

4.3.3 Model 3: Heterogeneous Compound Symmetric
For the heterogeneous compound symmetric variance structure we need
the following variance design matrices:

WITHIN
Lios 0104 0104 0104

V= V, =
’ [0104 0104] ? [0104 1104]

BETWEEN

I3 ®Js 0504 010s 0104
Vi= Vi= ) 428
? l: 0104 0104] ¢ [0104 I3 ®Js] (4.28)

Js is an 8x8 matrix of ones and ® is the Kroenecker product. Looking ahead to Table

4.6, it can be seen that by using the compound symmetric variance structure, the AIC is

reduced.
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4.3.4 Model 4: Multivariate Compound Symmetric
If we wish to include a between and within cross correlation between

insulin and phosphate, we need to add two parameters. The variance design matrices are:
104 0104] |:0104 0104] |:0104 1104]
V = V = V =
: [0104 0104 2710004 Lioe > 7 Tios 0104

I3 ®Jg 0104 0104 0104 0104 II3®J8]
Vi= Vs = Ve = . (429
! [ 0104 0104] ’ [0104 L ®J8] ° [113 ®Jg 0104 (4.29)

and

From the results shown in Table 4.6, it does not appear that accounting for the cross
correlation (V, and V) reduces the AIC.
4.3.5 Model 5: Semi-banded (2 bands)

For the semi-banded error structure we need to define the following

matrices:
(10000000] (01000000]
01000000 10100000
00100000 01010000
|looo10000 . 100101000
Si=l00001000| ™55 00010100 (4.30)
00000100 00001010
00000010 00000101
0000000 1] 00000010




The variance design matrices are as follows:

v,

V3=

Vs

To get an idea of what this variance structure looks like, we can examine what an

(1598, 0104 ]
0104  0y04 |

(0104 0104
0404 113 ®S, |

0104 1388,
|13 ®S;  0j04

V,=

V4=

B

(1,5®S; 0104 |
O0ios 0104 |

(0104 0104 ]
[ 0104 113 ®S; |

[ 113®S; 0504

004 I3® Sz]
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(4.31)

(4.32)

(4.33)

individual's variance/covariance matrix looks like. If the 8 individual insulin values are

stacked on top of the 8 individual phosphate values, the variance/covariance matrix will

look like the following:

INSULIN

A

D> D
W

=)

O O O O O O

6. 0 0 O
0; 62 0 0
0, 6, 6, 0
0 6, 6; 6

0 0 6; 6, 6
0 0 0 6, 6,
0 00 06
0 0 00

66 0 0 0 O
6; 6 0 0 O
Bs 0s 66 0 O
0 66 05 66 O
0 0 06 05 66
0 0 0 66 6;s
0 0 0 0 6
0 00 0O

s 66 0 0 O

SO O O

PLPLoocoococoo

O O O O OO

£

> D
\w

PHOSPHATE
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4.3.6 Model 6-11: More Semi-Banded

In a similar fashion to section 4.3.5 we can add "bands" to the covariance
structure until we have a multivariate "fully” banded error structure. For the purposes of
brevity, all semi-banded error structures will not be listed. The results using these
models are presented in Table 4.6. It should be noted that the multivariate fully banded
error structure failed to converge. This failure was the result of the variance/covariance
matrix going negative definite. This is a drawback to using the Hocking algorithm.

There is no built in prevention of negative definite matrices.

4.3.7 Model 12: Almost Totally Banded
In an attempt to obtain something close to the "fully" banded error
structure the 7th band was omitted and all other bands were included. This model was

not significantly better than model (9).

4.3.8 Model 13: Heterogeneous Totally Banded
The meaning of a banded error structure for the covariance between
insulin and phosphate is questionable. For this reason a model that allows for a banded
error structure for insulin and a different banded error structure for phosphate was
attempted. The model did not allow for any covariance between insulin and phosphate.
As can be seen in Table 4.6 this model beats all of the previous models. The only one

that comes close is model (9).
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4.3.9 Model 14: Heterogeneous Totally Banded with Insulin/Phosphate
Covariance

This model is very similar to model (13). The only difference is that we
allow for insulin and phosphate values taken at the same time to be correlated. This

model gives the lowest AIC of all the models attempted.

4.3.10 Model 15: Stochastic Parameter Model.
In this model each parameter of (4.19) and (4.20) was allowed to vary
stochastically across individuals. This model had the most parameters of any of the

models attempted. It also had the lowest -2 log likelihood.

Table 4.6
Results of fitting different variance structures to the data in Table 4.5.
#of -2 In time lag

Variance Structure Parameters Likelihood AIC +/- 1 S.E.
1. Comp. Independent 7+2=9  560.48 578.48 40.61 +/- 26.53
2. Semi-banded (1 band) 7+3=10 558.83 578.83 40.44 +/- 26.50
3. Hetro. Comp. Symm. 7+4=11 491.32 513.32 40.61 +/- 20.66
4. Mult. Comp. Symm. 7+6=13 487.76 513.76 40.29 +/- 20.55
5. Semi-banded (2 bands) 7+6=13  490.64 516.64 46.61 +/-31.98
6. Semi-banded (3 bands) 7+9=16 482.55 51455 49.21 +/-33.43
7. Semi-banded (4 bands) 7+12=19 468.36 506.36 4491 +/-29.59
8. Semi-banded (5 bands) 7+15=22  465.69 509.69 42.35+/-26.24
9. Semi-banded (6 bands) 7+18=25 446.88 496.88 50.21 +/- 22.56
10. Semi-banded (7 bands) 7+21=28 444.68 500.68 53.80 +/- 27.09

11. Totally banded (8 bands) 7+24=31  * * *
12. Semi-banded (1,2,3,4,5,6,8) 7+21=28 44423 500.23 50.13 +/-22.71
13. Tot. Banded no Corr. 7+16=23 446.89 492.89 47.50 +/- 23.90
14. Tot. Banded with Corr. = - 7+17=24 440.89 488.89 48.01 +/- 21.66
15. Stochastic Parameter 7+31=38 433.19 509.19 37.28 +/- 16.49

NOTE: * Could not converge.
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4.3.11 Estimating the Time Lag Between Maximum Insulin and Minimum
Phosphate

The time lag between maximum insulin and minimum phosphate values
was estimated as a nonlinear function of the fixed effects in the model. Taking the
derivative of (4.19) with respect to "t" and equating to zero gives the maximum insulin

value occurring at:
tiax =0z - O3 (4.34)

Taking the derivative of (4.20) and equating the result to zero and solving for "t" gives

the minimum phosphate value occurring at:

th = Jos/os —o. (4.35)

Now the nonlinear function of the parameters that we wish to estimate is given by:

g(a)=t£m—tx{1ax=(J0t7/0ts —0tg) — (02 - O3). (4.36)

Again following the work of Zerbe et al. (1994), the nonlinear function g(o) can be

expanded in a Taylor series about . We therefore have:
g(6) = g(ar) +[9g/0a]’ | 4o (6— 00). (4.37)
Thus g(&) is asymptotically normally distributed with:

Elg(&)] = g(o) and V[g()] = [9g/da)’ V() [0g/dar]. (4.38)
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In (4.38) we have \A’(a) = (H / V“H)—l. Here H is the design matrix from the last
iteration of the estimation process in model (4.21) . The estimates of the time lag along
with the standard errors are listed in Table 4.6. Table 4.6 also shows the importance of
choosing the correct variance structure. Choosing the wrong error structure can result in
inconsistent estimates and standard errors (van Houwelingen, 1988). Looking at Figure
4.2, it can be seen that the function for phosphate is rather flat around the minimum. As
a result, slight changes in the estimates of the function will lead to large changes in the
estimate of when the minimum occurs. The stochastic parameter model has the lowest -2
log likelihood, but its large number of parameters increase the AIC dramatically. Even
though by the AIC, model (14) is "better" than model (15), there are several advantages
to éhoosing model (15). First, it seems very intuitive to fit the nonlinear equations (4.19)
and (4.20) to each individual and then summarize across individuals. This is essentially
what the stochastic parameter model is doing. Secondly, looking at the plots of model
(14) and model (15), it appears that model (15) has a slightly better fit. Figure 4.2 shows
models (14) and (15) along with the average value for the insulin and phosphate data.
Model (15) consistently comes closer to the average value for both insulin and
phosphate. Thirdly, concerning the estimated time lag between minimum phosphate and
maximum insulin, model (15) has the lowest standard error of all the competing models.
Appendix C contains the MATLAB computer program used to run model (14).

Appendix D is the output from the MATLAB program.
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CHAPTER V
COMMENTS
5.1 Warnings
This thesis extends the current methods of analyzing nonlinear longitudinal data
to the case of multi-response data. Handling the multiple responses is essentially
accomplished by stacking the models in a clever fashion and then keeping track of which
observations contribute to the different variance components. Besides this element, the
MNLMEM is essentially a nonlinear model of the type discussed by Lindstrom and Bates
(1990), Hirst et al. (1991), and Young et al. (1992). As a result the MNLMEM suffers
from all of the pitfalls of the previously mentioned methods. These problems are
compounded by the fact that MNLMEM deals with multi-response data, therefore,
generally speaking the MNLMEM has more fixed effects, random effects, and variance
components to estimate. Three pitfalls particularly salient in the practical application of
MNLMEM will be discussed next.
First, the iterative procedure may converge to the wrong answer or not converge
at all. Second, there may be ill-conditioning in parameter estimation. Thirdly, the
application of asymptotic theory may not be appropriate.

Figure 5.1 shows the -2 log likelihood contour plot for the simple linear
regression model y=o+fx+e. As can be seen, the likelihood surface has an elliptical

contour. Finding the minimum of such a surface is computationally simple. In fact, one

can express the result in closed form. This simplicity is compromised when we start

dealing with a nonlinear model. In Figure 5.2 the least squares contours for the nonlinear
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modely = acexp{—Px} +e are plotted (Seber and Wild, 1989). This surface will be very

similar to the -2 log likelihood surface, differing only by a constant.

Figure 5.1
Likelihood surface for a simple linear model.
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As can be seen in Figure 5.2 there are two local minima on the likelihood surface, only
one of which is also the global minimum. If the wrong starting point is chosen, the

iterative process will converge to the wrong answer.

Figure 5.2
Least squares surface of a nonlinear model.
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Contour plots can be helpful when there are only two parameters in the model. Since
many models have more than two parameters, it would be possible to look at all pairs of
parameters. However, this soon becomes cumbersome and difficult to carry out in
practice. In general, nonlinear models produce likelihood surfaces that have local
maximums and have varying degrees of curvature.

In the linear model Y ~ N(XPB, 62I), ill-conditioning occurs when the design
matrix X is not of full rank. This often occurs in analysis of variance models as opposed
to regression models. When X is not full rank, there are an infinite number of solutions
to the normal equations. This problem is usually handled by implementing restrictions

such as B; =0 or X;B; =0 or looking at linear combinations t/B that are invariant to the

choice of B (Myers and Milton, 1991). In regression models that use continuous data, X
is almost always of full rank. However, the columns of X are sometimes close to being

linearly dependent. This leads to a problem called multicollinearity. The likelihood
function for a linear model that has multicollinearity will have likelihood contours that
are long skinny ellipses. This translates to parameter estimates having large variances.
Multicollinearity also makes the accurate computation of (X’X)~' exceedingly more

difficult. Some computer algorithms will warn the user that impending results may be

inaccurate. By linearizing the nonlinear model, the design matrix [H, from (3.37) for
example] is changing with each iteration. Thus, with each iteration it is possible to run
into multicollinearity problems. Another problem that can lead to ill-conditioning in
nonlinear models is having a nonlinear model that fits the data well for many different

values of parameters. This can lead to a flat likelihood surface in the direction of that
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parameter. Sometimes a simple reparameterization of the nonlinear model can fix the
problem and yield more precise estimates of the parameters. The likelihood surfaces for
single-response independent nonlinear models are often banana shaped and these models
don't have the complicated error structure associated with longitudinal data.

Consider the following univariate nonlinear fixed effects model:

y = f(B, x) + e, where e ~ N(0, 6I). 5.1

Typically to obtain the maximum likelihood estimates this model is "linearized" via
Taylor series expansion. The Taylor series expansion can be thought of as a
computational crutch used to find the maximum of the likelihood surface. Once the

algorithm converges the usual asymptotic property that is used to make inference is:

& ~ N[0, 62(H’H)™'] where H = of/da’ | 4 . (5.2)

It is often the case that (5.2) yields misleading results because the linearized likelihood
surface does not approximate the true likelihood surface adequately (Seber and Wild,
1989). In the nonlinear regression setting this problem is known as curvature. By
looking at the second derivatives of the nonlinear function f it is possible to measure the
degree of bending and twisting in the surface f; and the amount of curvature induced by
the choice of parameters. The MNLMEM models with additive errors suffer from the
same effects of curvature. However, nonlinear mixed effects models with random effects

in the nonlinear part of the model suffer from an additional level of approximation. For
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example, consider the model (2.62) by Hirst et al. (1991). They suggest using the

following to make inference about the fixed effects:

M
&~ N(a, X H/[Z,DZ] + 6*T] 'H,). (5.3)

=1

The variance in (5.3) not only depends on linearization about the fixed effects (H;) but
also the linearization about the random effects (Z,). This is a consequence of
approximating the conditional distribution y, | b;. By linearizing with respect to the
random effects, we are essentially approximating the likelihood surface around the given
estimates with a likelihood surface whose maximum we know how to find. Aside from a
simulation study by Pineiro and Bates (1995), little has been done to show how well this
approximation works. Pineiro and Bates (1995) concluded that for their example the

approximation works well.

5.2 Future Research

The distributional properties of the estimates of nonlinear mixed effects models
have not clearly been established. Currently, most authors treat the estimates as
maximum likelihood or restricted maximum likelihood estimates. A way of describing
how congruent the approximate likelihood surface is with the true likelihood surface
would be an area for fﬁture research. This would probably involve trying to tackle the
integral (2.52) using state of the art numerical analysis techniques. As stated earlier the
MNLMEM suffers from these same problems and there is more potential for poor

estimation since there are more fixed effects, random effects, and variance components
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associated with a MNLMEM model. In addition, the little work that has been
accomplished on the properties of the estimates focuses mainly on the fixed effects. An
advantage of the MNLMEM method is that functions of the variance components
frequently have interpretations such as correlations or regression coefficients between
different parameters. Therefore, a better understanding of the properties of the variance
components could be a fruitful area for future research. The model with additive errors
stands on more solid theoretical ground than the model with nonlinear random effects.
However, it is the stochastic parameter model of section 3.1 that seems to be able to
answer many intriguing questions. For example, suppose a researcher has bivariate data
and each outcome can be modeled with a Michaelis-Menten equation. Then, using the
stochastic parameter model it would be possible to determine the association between the

two different Michaelis-Menten constants.

5.3 Summary

This thesis extends the current methodology for analyzing nonlinear longitudinal
data by allowing for the modeling of multiple responses. Currently, researchers often
ignore the correlation of multiple responses taken on the same subject and perform
separate univariate analysis on each response. Two multi-response nonlinear mixed
effects models (MNLMEM) were proposed. The models both revolved around using a
Taylor series expansion to reduce the nonlinear model to a model with known techniques
of parameter estimation. In the first MNLMEM, random effects were allowed into the
nonlinear part of the model. The advantage of this model is that it allows the researcher

to answer questions about how the parameters of the different curves relate to each other.
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The disadvantage of this model is that the asymptotic properties of the parameter
estimates have not been well established. In the second MNLMEM, the error structure is
additive and therefore the asymptotic theory is better understood. Using the additive
error structure it is possible to model the multi-response analogs of the univariate
compound symmetric, banded, and arbitrary error structures. I feel that the major
contribution of this thesis is that it opens up a whole new area for potential research in
the medical field. Just how do you describe how two or more nonlinear functions behave
over time or space. For example, when I take my son to the doctor they always plot his
height and weight on a growth chart. How are height and weight in children related over
time? Does weight increase at the same rate as height? If a child is short to start with
will his or her weight increase faster or slower than a taller child? Multi-response data is
often collected but seldom analyzed multivariately. This is largely due to the fact that
the methods involved are difficult to implement, often require balanced data, or have yet
to be developed. Also, adequate computing power has become cheaply available only
within recent years. This thesis will allow researchers to consider modeling their

nonlinear multi-response longitudinal data multivariately.
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APPENDIX A

SAS/IML Program Implementing MNLMEM on the Doubly Labeled Water Data
Set

MULTIVARIATE NONLINEAR MODEL WITH RANDOM EFFECTS
JIM RUTLEDGES VERSION OF MARCH 19, 1995

This program is based on the model, notation, and

EM algorithm discussed by Nan Laird and James Ware
(1982). Random-Effects Models for Longitudinal Data.
Biometrics 38, 963-974. The program is a modified
version of a SAS/IML program written by Gary 0. Zerbe,
Ph.D., University of Colorado Health Sciences Center.

PROGRAM: dbluwatéd.iml
DATE: 4 November 1994

DESCRIPTION: This program is used on M. McClatchey's doubly
labeled water data. 12 subjects with missing data.
The within subject errors are not independent.
The model has not been reparameterized.
The bi's are stored in a matrix called b.
The user may choose Lindstrom and Bates or
Sheiner and Beale. In addition either ML or REML
may be selected.

options nocenter pagesize=59 linesize=100;
proc iml worksize=600; reset log nocenter fw=15;
* INITIALIZATION */

start init;

rawdata={

1 0.30 1 3.48854 3.35849,
1 0.45 2 3.32859 3.26164,
1 0.80 3 3.23474 3.16630,
1 1.80 4 2.97045 2.93978,
1 2.80 5 2.74969 2.80495,
1 3.80 6 2.52143 2.62949,
1 5.80 7 2.11144 2.25653,
1 7.80 8 1.76980 1.96274,
2 0.30 1 4.84651 4.64355,
2 0.45 2 4.57692 4.39669,
2 0.80 3 4.43260 4.30189,
2 1.80 4 4.07958 3.96784,
2 2.80 5 3.63036 3.65238,
2 3.80 6 3.25812 3.35920,
2 5.80 7 2.60030 2.76285,
2 7.80 8 2.10185 2.39742,
3 0.30 1 3.20667 3.11547,
3 0.45 2 3.12248 3.04462,
3 0.80 3 3.04104 2.99848,
3 1.80 4 2.67324 2.59952,
3 2.80 5 2.37099 2.41369,
3 3.80 6 2.10948 2.19710,
3 4.80 7 1.90107 -999,

3 5.80 8 1.69543 1.84347,
3 6.80 9 1.50291 -999,

3 7.80 10 1.36215 1.53534,
4 0.45 1 3.81704 3.63285,
4 0.80 2 3.67215 3.54392,
4 1.80 3 3.20852 3.15908,
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2.72821
2.36556
2.03101
1.76670
3.98354
3.89723
3.80345
3.40261
3.08061
2.84823
2.61171
2.41170
2.17684
1.99011
3.34111
3.22376
3.16021
2.93201
2.71902
2.54906
-999

2.26930
2.10675
1.97775
2.48738
2.41149
2.29184
2.10493
1.90630
1.71684
1.57067
1.38783
1.26306
1.12656
3.63611
3.32258
2.89675
2.50003
2.16647
-999

1.53860
1.11277
2.64678
2.51201
2.37777
2.09786
1.84498
1.61762
1.14205
0.82468
4.15769
3.74063
3.17787
2.63972
2.15830
1.55962
1.08578
4.70576
4.58412
4.26297
3.84957
3.38151
3.02387
2.34690
1.87995
3.80480
3.59962
3.52828
3.15069
2.87971
2.58227

2.72974,
2.43855,
-999,

1.91005,
3.83665,
3.76665,
3.61770,
3.38561,
3.08211,
2.87339,
2.70545,
2.53691,
2.33299,
2.19331,
3.23138,
3.14164,
3.08666,
2.908%%,
2.73100,
2.60510,
2.59870,
2.44538,
2.22306,
2.15739,
2.34182,
2.30957,
2.19497,
2.05838,
1.89827,
1.74078,
1.62261,
1.46549,
1.36204,
1.25589,
3.47015,
3.22538,
2.88807,
2.54646,
2.26991,
1.94030,
1.75135,
1.27193,
2.56522,
2.46956,
2.31604,
2.09272,
1.87358,
1.68425,
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12 5.80 7 2.09486 2.23495,
12 7.80 8 1.71963 1.90039);

data=uni(rawdata);

print data;

/* ----------------------------------------------------------------- *
The user must change the following information as required.
scol = the column number in the DATA matrix that contains the
subject ID.
tcol = the column number in the DATA matrix that contains the
independent variable (usaully time or dose).
ocol = the column in the DATA matrix that contains the variable
that identifies which occurance for the observation.
vcol = the column in the DATA matrix that contains the variable
that identifies which multivariate variabel is being
used.
rcol = the column in the DATA matrix that contains the
dependent variable.
p = the total number of fixed effects in the model.
k = the total number of random effects in the model.
r = the number of independent variables.
L Sup S U S T T T TR R R ﬂ/
tcol=2; scol=1; ocol=3; vcol=4; rcol=5;
p=4; k=4; r=2;
/* ................................................................. *
The user must provide initial estimates for:
a0 = the fixed effects (dimension p x 1).
s = the within subject error (dimension r x r).
D = the between individualt variance/covariance matrix
(dimension k x k).
S L L T T 1r/
al=(
3.774067521059,
-0.118765830373,
3.6035332163139,
-0.098022585194);

s={
0.0015215081822 0.0013622775346,
0.0013622775346 0.002020751216);

D=(
0.5005639015672 -0.004352555125 0.473558897874 -0.003949024314,
-0.004352555125 0.0009373859838 -0.004161697689 0.0008683960924,
0.473558897874 -0.004161697689 0.4485704542735 -0.003789586783,
-0.003949024314 0.00084683960924 -0.003789586783 0.0008047989647);

94




95

/t .............................................................................. *
The user must specify the following:
method = maximum likelihood or restricted maximum likelihood (ML or RML).
approc = approximation method (LB=Lindstrom and Bates SB=Sheiner and Beale).
maxiter1 = the maximum number of iterations for the nonlinear loop.
maxiter2 = the maximum number of iterations for the EM algorithm loop.
converge = the convergence criteria for change -2inLikelihood

L L L R e L R R R 1I‘/

method='ml'; approx='LB'; maxiter1=10000; maxiter2=100; converge=0.0001;

bO=repeat(0,12,k); /* This initializes b0 */

bup=b0; /* This initializes the updated bi */

finish;

/* ............................................................................. *
The function “uni" converts a multivariate type of data set to a univariate
type of data set.

ol L L L T R R */

start uni(data);

flag=-999;

r=ncol(data)-3; print r;
m=nrow(data); print m;
c=m*r;
oldi=0;
datanew=repeat(0,c,5);
do i=1 to m;
do j=1 tor;
k=3+j;
1i=(i-1)*r+j;
datanew[ii,]1=datal(i, 1:31 || j || datali,kl;
end;
end;
do i=1 to ¢;
if datanew(i,5] "=flag then do;
if i=1 then do;
data2=datanew(i,];
end;
else do;
data2=data2//datanew([i,];
end;
end;
end;
return(data2);
finish;

/*  SAMPLE SIZE DETERMINATION */

start size;
n=nrow(data); ni=1; m=1; nij=1; no=1; gi=1; qimax=0;
lastsid=datal[1,scoll; lastoid=datal1,ocol];
do 0=2 to n; sid=data{o,scol]; oid=datalo,ocol];
if sid=lastsid then ni=ni+1;
else do;
if m=1 then NNi=ni; else NNi=NNi||ni;
if m=1 then QQi=qi; else QQi=QQi||qi;
ni=1; m=m+1; lastsid=sid; if gi > gimax then gimax=qi;
qi=0;
end;
if oid=lastoid then nij=nij+1;




else do;
if no=1 then NNNij=nij; else NNNij=NNNij||nij;
nij=1; no=no+1; lastoid=oid; qi=qi+1;
end;
end;
NNi=NNi||ni; QQi=QQi||qi; NNNij=NNNij||nij;
ij=0; NNij=repeat(0,m,qimax);
doi=1tom qi=QQili];
do j =1 toqgi; ij=ij+l;
NNijli,jI=NNNij[ij];
end;
end;
nc=0;
/*nc=2#m;*/
n=n+nc;
free NNNij;
print, nm p k no r; print NNi; print QQi; print NNij;
finish;

/* NONLINEAR LEAST SQUARES LOOP */

start nonlin;
m2tnLik=1000;
m2lnLik1=0;
do iter=1 to maxiter1 while (ABS(m2lnLik-m2lnLik1)>converge);
m2tnLik1=m2inLik;
run em;
dela=al-a;
al=a;
print iter minLik method approx;
print a0 dela;
print s D;
print b0;
end;
finish;

/* E-M ALGORITHM FOR LAIRD-WARE MODEL */

start em; m2lnL=1000; m2lnRL=1000; change=1000;
do subiter=1 to maxiter2 while(change>converge);
last=0; XPX=0; XPy=0; yPy=0; logdetv=0;
doi=1¢tom
run subject;
XPX=XPX+Xi *Wi*Xi; XPy=XPy+Xi *Wi*yi;

yPy=yPy+yi *Wi*yi; logdetV=logdetV+log(det(Vi));
end;
invXPX=inv(XPX); a=invXPX*XPy;
m21inL0=m2lnL; m2inRLO=m2lnRL;
rss=yPy-a *XPy; object=logdetV+rss;
constant=n#log(2#3.14159);
m2lnL=constant+object; m2lnRL=m2lnL+log(det(XPX));
dm2 lnt=abs(m2lnL-m2{nL0); dm2lnRL=abs(m2{nRL-m2LNRLO);
if method='ml' then change=dmllnL;
if method='ml' then m2lnLik=m2lnL;
if method='rml' then change=dm2lnRL;
if method='rml' then m2lnLik=m2LnRL;
last=0; T1=0; T12=0;
print subiter method approx m2lnLik change;

doi=1¢tom
run subject;
ei=Ri*Ui *Wi*(yi-Xi*a); bi=D*2i *Wi*(yi-Xi*a); bupli,l=bi";
if method='rml' then Wi=Wi-Wi*Xi*invXPX*Xi *Wi;
T2=T2+D-D*2i " *Wi*Zi*D+bi*bi";
Tistar=Ri-Ri*Ui *Wi*Ui*Ri+ei*ei’;
do j = 1 to qi;
firstj=(j-1)#r+1; lastj=r#j;
T1=T1+t1star{firstj:lastj,firstj:lastjl;
end;
end;




D=T2/m; S=T1/no;
* §{1,21=0;
* 52,11=0;
b0=bup;
end;
finish;

/* MODEL SPECIFICATION FOR SUBJECT i */
start subject;
ni=NNi[il; gi=QQilil;
do j =1 to qi;
nij=NNijli,jl; first=last+1; last=last+nij;
if approx='LB' then bi0=b0[i,1";
if approx='SB' then bi0=repeat(0,k,1);
Ai=1(p); Bi=I(k);
ci0=Ai*a0+Bi*bi0;
c1=ci0[1]1; c2=ci0[2]; c3=ci0[3]; c4=ciO[4];

run modet;
if j = 1 then do;
yisyij; XisXij; zZi=2ij; Ui=Uij;
end;
else do;
yi=yi//yij; XisXif/xij; 2i=Zi//iij;
Ui=block(Ui,Uij);
end;
end;
Ri=[(qi)@S; Vi=Ui*Ri*Ui +Zi*0*2i; Wisinv(Vi);
finish;

/* ~ MODEL SPECIFICATION FOR SUBJECT i ON OCCASION j */

The user must customize this part of the program to fit their specific nonlinear
functions.

start model;
yyij=datalfirst:last,rcoll;
fij=yyij; /* intialize fij */
Xij=repeat(0,nij,p);
Ui j=repeat(0,nij,r);
dol =1tonij; o= first+l-1;
var=datalo,vcoll;
if var=1 then fij[l,}=ct*exp(c2*datalo,tcoll);
if var=2 then fij[l,}=c3*exp(cé*datalo,tcoll);
if var=1 then Xij[l,1=exp(c2*datalo,tcoll)||c1*datalo, tcoll*exp(c2*datalo, teol

1

|1<0 03;

if var=2 then Xij[l,1=(0 0)]|exp(c4*datalo,tcoll)||c3*datalo,tcot]*exp(ch*datalo, tecoll);

Ui=datalo,vcoll//{1,2); U2=design(U1); Uij(l,1=u201,];
end;
Zij=Xij;
yij=yyij-fij+Xij*a0+2ij*bi0;
finish;

* FISHERS INFORMATION MATRIX ON VARIANCE PARAMETERS */
start Fisher;
sumkint=Ck#(k+1)/2); sumrint=(r#(r+1)/2);
q=sumkint+sumrint; THETA=repeat(0,q,1);
do j =1togq;
if j <= sumkint then do;
rr=k; jj=j; run unvech; t=tt; u=uu; THETA[jI=D[t,ul;
end;
else do;
rr=r; jj=j-sumkint; run unvech; t=tt; u=uu;
THETA[jl=SIt,ul;
end;
end;
F=repeat(0,q,q);last=0;
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doi=1¢tom
run subject;
do j =1toq;
if j <= sumkint then do;
rr=k; jj=j; run unvech; t=tt; u=uu;
Dtu=repeat(0,k,k); Dtult,ul=1; Dtulu,tl=1;
Vij=Zi*Dtu*2i’;
end;
else do;
rr=r; jj=j-sumkint; run unvech; t=tt; usuu;
Dtu=repeat(0,r,r); Dtult,u]l=1; Dtulu,tl=1;
Vij=sui*(I(qi)antu)*ui’;
end;
do jp=1toq;
if jp <= sumkint then do;
rr=k; jj=jp; run unvech; tp=tt; up=uu;
Dtu=repeat(0,k, k); Dtultp,upl=1; Dtulup,tpl=1;
Vijp=Zi*Dtu*Zi;
end;
else do;
rr=r; jj=jp-sumkint; run unvech; tp=tt; up=uu;
Dtu=repeat(0,r,r); Dtultp,upl=1; Dtulup,tp)=1;
Vijp=Ui*(1(qi)adtu)*ui";

end;
FLj,ipl=FLj,jpl+trace(Wi*Vij*Wi*Vvijp)/2;
end;
end;
end;
VvTHETA=inv(F); print, F; print, THETA VTHETA;
finish;

/*  SUBSCRIPTS FOR rr X rr MATRIX FROM VECH SUBSCRIPT */
start unvech;
11j=0;
do ttt = 1 to rr;
do uuu = ttt to rr;

if jji=jj then do;
tt=ttt; uu=uuy;

start parmcorr;
rho=thetaf4]/(sqrt(theta[1])*sqrt(theta[101));
drhot1=-thetal4]/(2*sqrt(theta[1]1**3)*sqrt(thetal101));
drhot4=1/(sqrt(theta1])*sqrt(theta[101)});
drhot10=-thetal4l/(2*sqrt(theta[1])*sqrt(thetaf10]1**3));
drhodt= drhot1||(0 03| |drhot4||<0 0 0 0 03| |drhot10||(0 O 0);
Vrho=drhodt*vtheta*drhodt";

SErho=sqgrt(Vrho);

print rho Vrho SErho;

finish;
run init; run size; run nonlin; run fisher; run parmcorr;

98




APPENDIX B

SAS/IML Output from Implementation of MNLMEM on the Doubly Labeled

SUBITER
1

SUBITER
2

ITER

AD
3.7740674495849
-0.118765801476

3.603533767924
-0.098022710907

S
0.0015215111039
0.0013622765505

BO
-0.266382253316
1.1232677056215

-0.46761894643
0.3294988141049
0.2878382244479
-0.428102816537
-1.243907039587
0.0270432885607
-1.050269776513
0.5856345677921
1.0363183783957
0.0666798534613

475

Water Data Set

METHOD APPROX M2LNLIK

ml LB

M2LNLIK
-625.2696011315 3.

METHOD APPROX
mi L8

M2LNLIK METHOD APPROX
-625.2696011315 ml LB

DELA
-2.858395964E-8
1.1759749605€-8
-2.171445592€E-7
3.8649749928E-9

D

0.0013622765505 0.5005639256633
0.002020757796 -0.004352578385
0.473558071447

-0.003948873815

0.0309580593609
0.0108513894844
0.0031042939952
-0.026092596711
0.0263376461123
0.050819757926
0.0162931262984
-0.034271586716 0.0243405862641
-0.02752976375 -0.985471790299
-0.06076834238 0.5850842543517
-0.004322158476 0.9753086370103
0.014620174856 0.0537152813834

-0.226134244508
1.0540430778556
-0.426795566351
0.2825006905455
0.2593326270154
-0.384938895537

=1.21098465773

run fisher;

CHANGE

-625.2695978058 1625.2695978058

CHANGE
3257138057€-6

-0.004352578385 0.473558071447 -0.003948873815
0.0009373842937 -0.004161733707 0.0008683992088
-0.004161733707 0.4485687619091 -0.003789455142
0.0008683992088 -0.003789455142 0.0008048061691

0.0280330611766
0.0104345856029
0.0024395748218
~0.023439212358
0.0247293651261
0.0465317101601
0.0156711591258

-0.03170161512
-0.025855083381
-0.056897170009
-0.003716347299
0.0137699721544
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F
19053953.806116

1 -5444645565.826

.

5035142.3461646
425859616.13476

1 -289036974574.3
: 187238048.18543

.

-40171045.15763
11456594038.52
-10613066.73416

-461216078.5001

: 312116808764 .15
: -202537586.3622

2514149298.7284

-3887624190760
3283021171.587

-448876590.2029
304076818845.69
-196721540.9979

-5444645565.826

: 8396215542413.4
: -7094258568.692

21172942.676956
-6026727233.563
5592612.2352753

486144170.35955

: -328357500276.5
1 212797632.50339

2947735441.0672
-4533383489905
3832490717.0588

4971559.4917801
-6836234513.399

1 54836246.327173

-9983003.047661
13888890257.754

: -120829835.6828

5035142.3461646
-7094258568.692
66891173.581819

THETA

425859616.13476
21172942.676956

16062681527.238
472198899.55471

-896862554.7598
-44690411.68767

-17347157036.86
-511655481.4446

133719016358.89
2781669528.3777

-16919344597.79
-498282931.9899

-289036974574.3
-6026727233.563

472198899.55471
23582378.650758

18272292933 .824
539919372.97908

156189572852.45
3264359765.614

184139130.0443
5513040.9501338

-370138335.3104
-11079684.1959

187238048.18543
5592612.2352753

-40171045.15763
486144170.35955

-896862554.7598
18272292933.824

84741036.698842
-1026654141.43

971563309.98067
-19765135478.63

-5289057051.768
151732586428.69

945871108.62591
-19264223310.3

-461216078.5001
2947735441.0672

-17347157036.86
156189572852.45

971563309.98067
-6204019827.414

18761752647.714
-168822512660

-144259289993.6
2097161516442.4

18274893068.951
-164352489204.7

11456594038.52 312116808764 .15

-328357500276.5

+466690411.68767
539919372.97908

-1024654141.43
20838086989.487

-6204019827.414
177645700774 .32

-10470578.27742

-4533383489905

-511655481.4446
3264359765.614

-19765135478.63
177645700774.32

- 168822512660
2449926785540

-198873272.4628

208958586.4523 3684183419.2407

21034036.92645 400041316.19596

-420331236.29

-10613066.73416
212797632.50339

-7493860134.605

-202537586.3622
3832490717.0588

2514149298.7284
4971559.4917801

133719016358.89
184139130.0443

-5289057051.768
-10470578.27742

-144259289993.6
-198873272.4628

1801676542907.4
3171287199.264

-140646310203.4
-193475352.2735

-3887624190760
-6836234513.399

2781669528.3777
5513040.9501338

151732586428.69
208958586.4523

2097161516442 .4
3684183419.2407

3171287199.264
110283558.81409

-6435316189.919
-153799177.8674

3283021171.587
54836246.327173

100

-448876590.2029
-9983003.047661

-16919344597.79
-370138335.3104

945871108.62591
21034036.92645

18274893068.951
400041316.19596

-140646310203.4
-6435316189.919

17835344046 .567
388908054.78238

304076818845.69
13888890257.754

-498282931.9899
-11079684.1959

-19264223310.3
-420331236.29

-164352489204.7
-7493860134.605

-193475352.2735
-153799177.8674

388908054 .78238
279758784 .32373

-196721540.9979
-120829835.6828

0.5005639256633
-0.004352578385

0.473558071447
-0.003948873815
0.0009373842937
-0.004161733707
0.0008683992088
0.4485687619091
-0.003789455142
0.0008048061691
0.0015215111039
0.0013622765505

0.002020757796




VTHETA
0.0418764612216

: 2.9284909031E-6
: -2.175022377E-8

-0.000367689814

: -6.348945433E-7
: 1.5411583331E-9

.

0.0396129618901
2.8096724763E-6
-3.102951731€-8

-0.000333521267

: -5.890004582E-7
: 2.1558225568E-9

3.2285130654E-6

: 1.3763236095€-7

-2.24792126E-10

-0.000347815469
~6.091040836E-7
2.0752015801E-9

2.9284908872E-6
1.2768082439€-7
-2.93813726E-10

0.0374718088491
2.6956179328E-6
-4.407776515E-8

-0.000315493798

: -5.650695035€-7
: 2.9095258218E-9

2.6563496818E-6
1.1844842834E-7
-3.85887016€-10

-2.737123077€-8
-2.35601089€-10
4.7538350567E-8

-2.443281879E-8
-2.68710405€-10
7.1491086419E-8

-2.175022373E-8

: -2.93813727e-10
: 1.0655848237E-7

475

-0.196742340643 0.0778412021067 0.

RHO

-0.000367689814
0.0374718088492

0.0000410623089
-0.000332185259

-0.000349490978
0.0355166586478

0.0000379906357
-0.000304068249

-6.927349107€-7
2.9448584514E-6

0.000038857527
-0.000314853073

-6.34894543E-7
2.6956179185E-6

-0.00033218526
0.0336635226762

0.0000359505162
-0.000288203171

-5.81821979€-7
2.4674806379E-6

1.9112882245E-9
-2.056338643E-8

1.7169473208E-9
-3.017848126€-8

1.5411583335E-9
-4 .40777651E-8

VRHO

0.0396129618901
-0.000315493798

-0.000349490977
0.0000359505162

0.0375089513659
-0.00030155038

-0.000318468333
0.0000333946554

3.0834255394E-6
-6.12604209€-7

-0.000330926511
0.0000340970625

2.8096724612€E-6
-5.650695032€-7

0.0355166586478
-0.000288203171

-0.00030155038
0.00003167267

2.5601696018€-6
-5.211927328€-7

-2.376434421E-8
1.4448685268E-9

-2.798458392E-8
2.0504433558€-9

-3.102951726E-8
2.9095258222E-9

SERHO
2790003621982

101

-0.000333521267 3.2285130827t-6 -0.000347815469
2.6563496966E-6 -2.737123081E-8 -2.443281883¢-8

0.0000379906357 -6.927349111€-7 0.000038857527
-5.818219793E-7 1.9112882244E-9 1.7169473206E-9

-0.000318468333 3.0834255558E-6 -0.000330926511
2.5601696158E-6 -2.376434425E-8 -2.798458396E-8

0.0000352777936 -6.414288272E-7 0.0000359632906
-5.407770563E-7 1.6967343358E-9 1.9624500445E-9

-6.414288269E-7 1.4864121172E-7 -6.616047188E-7
1.2743885917E-7 -2.73268526E-10 -2.47672873E-10

0.0000359632906 -6.616067192E-7 0.0000368412313
-5.607511094E-7 1.630878679E-9 1.8852064023E-9

-5.890004578E-7 1.3763236095E-7 -6.091040833E-7
1.1844842834E-7 -2.35601089€-10 -2.68710405E-10

-0.000304068249 2.9448584669E-6 -0.000314853074
2.4674806511E-6 -2.056338646E-8 -3.01784813E-8

0.0000333946554 -6.126042093E-7 0.0000340970625
-5.211927331E-7 1.4448685267E-9 2.0504433556E-9

-5.40777056E-7 1.2743885917E-7 -5.607511091E-7
1.1009218227E-7 -2.03109641E-10 -2.79464307E-10

1.6967343359E-9 -2.73268527€-10 1.6308786791E-9
-2.03109641E-10 6.0263739478E-8 5.363432531E-8

1.9624500447E-9 ~2.47672873E-10 1.8852064025E-9
-2.79464307E-10 5.363432531E-8 6.4057431628E-8

2.1558225572E-9 -2.24792127E-10 2.0752015804E-9
-3.85887016E-10 4.7538350567E-8 7.1491086419E-8

run parmcorr;
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APPENDIX C

MATLAB Program Implementing MNLMEM on the Glucose Tolerance Test Data
Set

MULTIVARIATE NONLINEAR MIXED EFFECTS MODEL
Jim Rutledge's version of 8 August 1993

This algorithm is based on the maximum likelihood and
restricted maximum Likelihood algorithms proposed by
Hocking in his book The Analysis of Linear Models (ch 8).

This version of the program uses convergence of -2 log
likelihood for the inside Hocking loop. The convergence
of the non-linear parameters is used in the outer Newton-
Raphson Loop.

DATA: Ron Gotlin's data from a glucose tolerance test.
This program models phosphate and insulin levels for
the control group. The time lag between max insulin
and min phosphate is estimated.

R AL 3T e e 32 32 e e 32 3 32 T 3R 22 2 3
=
o
=
m

DATE: This program was revised on 20 November 199.

% The user must supply Ao (an initial guess) for the fixed effects.
% The individual least squares solution may provide a good guess.
% The user must specify an initial guess for the SI (the variance
% components).

format long

clear

tic

% /*%%% INITIAL VALUE *%**/

Ao =[
1.300050028277
0.661658368497
61.517432378772
-0.501793228314
0.010423565490
68.662393142131
265.152281605558]

Si=[
2.86769926486938
1.81292281093675
1.28880294909515
1.02797490997373
0.17566081602352

-0.35613748135715
-1.45150651269620
-2.24218716017727
0.30043737616578
0.15568697682150
0.09836749207982
0.09199411143703
0.12034755996616
0.15012514728637
0.00927951563554
0.02270942515335
-0.06427436936667]

n=208;
p=max(size(Ao));
k=max(size(SI1));




Aoold=zeros(size(Ao));
Aold=zeros(size(Ao));
RO=zeros(k,1);
W=eye(k);

m2nL=1000;
m2LnRL=1000;
diffout=1000;
diffin=1000;
converge=0.00001;
method='mi ';
ocount=0;

incount=0;

%**********ﬁ*********************t******t****************************
% The user must customize the model subroutine. The model used is:

4

% Y=X*ALPHA + e
%

% Where the V(e)=SI[11*V1+ ... +SI[kl*Vk.

%

% The user must specify the n x n variance matrices V1,V2,...,Vk, the

% n x p design matrix X, and the n x 1 data matrix Y.
%********i**i**i*tt*******t**tt***********iitt*i**t*i*tfi************

%**** MODEL SPECIFICATION ***

DATA=[

0 .001 75 24
30 142 97
60 132 100
90 100 87
120 84 71
180 80 29
260 76 20
300 72 20
.001 69 30
30 139 55
60 162 90
90 131 70
120 111 42
180 96 36
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90 11
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.001 77

30 125

60 104

90 101
120 104
180 69
240 89
300 75
.001 88

30 188

60 170

90 104
120 102
180 76
240 80
300 é2
.001 84

30 144

60 129

84
90

90 126 102

120 112
180 94
240 69
300 78
.001 86
30 157
60 117
90 116
120 89
180 N
240 88
300 82
.001 69
30 120

87
47
32
15
1
45
28
50
32
1"
25
16
24
97

60 119 100

90 99
120 100
180 57
260 75
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.001 76

30 128

60 90

90 50
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Vi=sparse([

v2=sparse( [

V3=sparse([

Vé4=sparse([

VS=sparse( [

Vé=sparse({

V7=sparse([

V8=sparse([

V9=sparse([

V10=sparse([

V1i=sparse([

V12=sparse([

V13=sparse([

Vi4=sparse( [

V15=sparse([

Vié=sparse([

V17=sparse([

kron(eye(13),subV1)
zeros(104)

kron{eye(13),subVv2)
zeros(104)

kron(eye(13),subv3)
zeros(104)

kron(eye(13),subVéd)
zeros(104)

kron(eye(13),subV5)
zeros(104)

kron(eye(13),subVé)
zeros(104)

kron(eye(13),subv7)
zeros(104)

kron(eye(13),subv8)
zeros(104)

zeros(104)
zeros(104)

zeros(104)
zeros(104)

zeros(104)
zeros(104)

zeros(104)
zeros(104)

zeros(104)
zeros(104)

zeros(104)
zeros(104)

zeros(104)
zeros(104)

zeros(104)
zeros(104)

zeros(104)
kron(eye(13),subv1)

%/**** NON-LINEAR ***********l

while diffout > converge;

alt=A0(1,1);
al2=A0(2,1);
a13=A0(3,1);
a21=Ao(4,1);
a22=Ao(5,1);
a23=A0(6,1);
a24=Ao(7,1);

x1=DATA(1:104,3);

x2=x1;

yy1=DATA(1:1
yy2=DATA(1:1

04,5)./10;
04,6)./1;

zeros(104)
zeros(104)3);

zeros(104)
zeros(104)1);

zeros(104)
zeros(104)1);

zeros{104)
zeros(104)1);

zeros(104)
zeros(104)1);

zeros(104)
zeros(104)1);

zeros(104)
zeros(104)1);

zeros(104)
zeros(104)1);

zeros(104)
kron(eye(13),subv1)1);

zeros(104)
kron(eye(13),subv2)1);

zeros(104)
kron(eye(13),subv3)1);

zeros(104)
kron(eye(13),subvé)l);

zeros(104)
kron(eye(13),subv5)1);

zeros(104)
kron(eye(13),subVv6)1);

zeros(104)
kron(eye(13),subv7)1);

zeros(104)
kron(eye(13),subv8)});

kron(eye(13),subv1)
zeros(104)1);
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% The user must specify the form of the nonlinear functions
% to be fit to the data. The derivatives also need to be
% specified.

fizal1+x1. a12.*exp((-1/a13).*x1);
f2=a21+a22.*(x2+a23)+a24./(x2+a23);

dall=ones(size(x1));
da12=x1."a12.*log(x1).*exp((-1/a13).*x1);
da13=x1."a12.*(x1./(a13"2)).*exp((-1/al13).*x1);
da21=ones(size(x2));

da22=x2+a23;

da23=a22-a24./((x2+a23)."2);

da24=1./(x2+a23);

yt=yyl-f1;
y2=yy2-£2;

X=sparse([dall dal2 dal3 zeros(104,4);
zeros(104,3) da21 da22 da23 da24]);

Y=[y1;y2];

%/**** HOCKING ALGORITHM ****/

initer=1;

maxiter=10;

while diffin > converge;
incount=incount+1

% The user must specify the form for V.

V=Sparse(SI(1,1)*V1¢SI(2,1)*V2+SI(3,1)*V3*SI(4,1)*V4+Sl(5,1)*V5+Sl(6,1)*V6+...

SI(7,1)*V7+SI(8,1)*V8+S1(9, 1)*Vo+S1(10, 1)*VI0+SI (11, 1)*V11+SI(12,1)*Vi2+. ..

SI(13, 1)*V13+S1 (14, 1)*V14+S1(15,1)*V15+S1(16,1)*V16+S1(17,1)*V17);

IvV=inv(V);
if method=='rmt*;

IV=inv(V) - (T nvEVIEX*inv(X > inv(VI*X)*X *inv(V));
end;
XPX=X'*inv(V)*X;
XPY=X'*inv(V)*Y;
YPY=Y'*inv(V)*Y;
A=inv{XPX)*XPY;

for i=1:k;
for j=1:k;
eval(['W(i,j)=trace(IV*V' int2str(i) '*IV*V!' int2str(j) *');'1);
end;
end;

OMEGA=W;

YmXAT=(Y-X*A)!;
for i=1:k;

eval (['ROCT, 1)=YmMXAT*IVH*V! int2str(i) '*IV¥(Y-X*A);'l);
end;

RHO=RO;
SI=inv(OMEGA)*RHO;

m2lnLold=m2lnL;
m2lnRLol=m2lnRL;
rss=(Y-X*A) ' *inv(V)*(Y-X*A);
detV=det(V)
object=log(detV)+rss;
n=max(size(Y));
constant=n*log(2*3.14159265);
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m2lnL=constant+object;

m2 LnRL=m2 InL+log(det (X' *inv(V)*X));
dm2inL=abs(m2inL-m2tnLold);
dm2lnRL=abs(m2{nRL-m2LnRLol);

if method=='rmt’;
diffin=dm2lnRL;
end;

if method=='ml ';
diffin=dm2lnt;

end;

incount, m2lnl, m2inRL

initer=injter+1;

end;

m2{nL=1000;

diffin=1000;

incount=0

di f fout=norm(Ao-Aocld);

Aoold=Ao;

Ao=Ao+A;

ocount=ocount+1

ocount, m2lnL, m2lnRL, diffin, diffout, A, Ao, SI
end

Valpha=inv(X**inv(V)*X)

% This part of the program estimates a nonlinear funtion of
% the parameters. The user can change this if desired.

maxIn=Ao(2, 1)*A0(3,1)
minPhos=-(sqrt(Ao(5,1))*Ao(6,1)-sqrt(Ao(7,1)))/sqrt(Ao(5,1))
g=minPhos-maxIn

dgda1=0;

dgda2=Ao(3,1);

dgda3=A0(2,1);

dgdaé=0;

dgdaS5=-sqrt(Ao(7,1))/2*Ao(5,1)°1.5;

dgdaé=-1;

dgda7=1/(2*sqrt(Ao(5,1)*A0(7,1)));

dgda=[dgdal dgda2 dgda3 dgda4 dgda5 dgdab dgda7]
Vg=dgda*Valpha*dgda®

seVg=sqrt(Vg)

time=toc
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MATLAB Output from Implementation of MNLMEM on the Glucose Tolerance

m2lnL =

4.408879122907945e+002

m2lnRL =

4.577920807688517e+002

incount =

2

detV =

1.319844279947076e-065

incount =

2

minL =

4.408879122907933e+002

m2inRL =
4.577920810058294e+002

incount =

0

ocount

21

ocount =

21

melnt =
1000

meinRL =

4.577920810058294e+002

diffin =

Test Data Set




1000

diffout =

9.988600625851892e-006

A=

1.0e-005 *

-0.00015770049412
-0.00000268487961
0.00351017690059

Ao =

1.0e+002 *

0.00447126327161
-0.00000587159994
-0.09003748241892
-0.56728130089824

0.01382819282386
0.00649626764841
0.63409689486964
-0.00504904479497
0.00010352797906
0.71657198839682
2.67872230307720

SI =

| 2.86769905524166

1.81292151927484
1.28880009445575
1.02797037782445
0.17565478144361
-0.35614394284830
-1.45151164988108
-2.24219322026139
0.30043743696911
0.15568701638798
0.09836757091213
0.09199436007768
0.12034788821133
0.15012513892531
0.00927940250155
0.02270931858372
-0.06427482425216

Valpha =
1.0e+004 *

1,
@,
3,1
4,1
5,N
6,1
7, M
1,2)
(2,2)
(3,2)
(4,2)
(5,2)
€6,2)

0.00000137321900
0.00000000978822
0.00000957329433
0.00000206142877
-0.00000000407615
-0.00002480274494
-0.00021688730795
0.00000000978822
0.00000005377500
-0.00001107432012
0.00000078294124
-0.00000000108237
-0.00001666455940
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(7,2) -0.00009797207142
(1.3) 0.00000957329433
(2.3)  -0.00001107432012
(3.3) 0.00353370904076
(4.3)  -0.00017667088905
(5.3) 0.00000026139787
6.3) 0.00344742212382
(7.3) 0.02136120121562
(1.4) 0.00000206142877
(2.4) 0.00000078294124
(3.4) -0.00017667088905
(4.4) 0.00014508210056
(5.4)  -0.00000020832449
(6.4)  -0.00269151347156
(7.4)  -0.01728645642273
(1.5)  -0.00000000407615
(2.5)  -0.00000000108237
(3.5) 0.00000026139787
(4.5)  -0.00000020832449
(5.5) 0.00000000032157
(6.5) 0.00000367160241
(7.5) 0.00002411987429
(1.6)  -0.0000248027449%
(2,6)  -0.00001666455940
(3.6) 0.00344742212382
(4.6)  -0.00269151347156
(5.6) 0.00000367160241
(6.6) 0.05394597315306
(7.6) 0.33394390654825
(1,7)  -0.00021688730795
(2)7)  -0.00009797207142
3.7 0.02136120121562
(4.7)  -0.01728645642274
G.7) 0.00002411987429
6.7 0.33394390654824
7.7 2.11299726363316
maxln =

41.19263144096442
minPhos =
89.19795435927152
g =
48.00532291830710
dgda =
Columns 1 through &
0 63.40968948696425
Columns 5 through 7
-0.00862026180057 -1.00000000000000
Vg =
4.692892806029775e+002
sevg =
21.66308566670449
time =

1.969790000000000e+003

0.64962676484061

0.30024604083479
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